Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.05497
Cited By
Deep Network Approximation Characterized by Number of Neurons
13 June 2019
Zuowei Shen
Haizhao Yang
Shijun Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Network Approximation Characterized by Number of Neurons"
40 / 40 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
Learning with Noisy Labels: the Exploration of Error Bounds in Classification
Haixia Liu
Boxiao Li
Can Yang
Yang Wang
41
0
0
28 Jan 2025
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
Yunfei Yang
62
2
0
02 Sep 2024
Time Series Generative Learning with Application to Brain Imaging Analysis
Zhenghao Li
Sanyou Wu
Long Feng
MedIm
41
0
0
19 Jul 2024
Generative adversarial learning with optimal input dimension and its adaptive generator architecture
Zhiyao Tan
Ling Zhou
Huazhen Lin
GAN
42
0
0
06 May 2024
Double-well Net for Image Segmentation
Haotian Liu
Jun Liu
Raymond H. F. Chan
Xue-Cheng Tai
47
7
0
31 Dec 2023
Expressivity and Approximation Properties of Deep Neural Networks with ReLU
k
^k
k
Activation
Juncai He
Tong Mao
Jinchao Xu
37
3
0
27 Dec 2023
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
29
1
0
19 Dec 2023
Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation
Yuesheng Xu
Taishan Zeng
AI4CE
32
4
0
14 Sep 2023
Nearly Optimal VC-Dimension and Pseudo-Dimension Bounds for Deep Neural Network Derivatives
Yahong Yang
Haizhao Yang
Yang Xiang
31
19
0
15 May 2023
Deep neural network approximation of composite functions without the curse of dimensionality
Adrian Riekert
24
0
0
12 Apr 2023
Deep Nonparametric Estimation of Intrinsic Data Structures by Chart Autoencoders: Generalization Error and Robustness
Hao Liu
Alex Havrilla
Rongjie Lai
Wenjing Liao
39
6
0
17 Mar 2023
One Neuron Saved Is One Neuron Earned: On Parametric Efficiency of Quadratic Networks
Fenglei Fan
Hangcheng Dong
Zhongming Wu
Lecheng Ruan
T. Zeng
Yiming Cui
Jing-Xiao Liao
59
8
0
11 Mar 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
Approximation analysis of CNNs from a feature extraction view
Jianfei Li
Han Feng
Ding-Xuan Zhou
24
3
0
14 Oct 2022
Deep Neural Network Approximation of Invariant Functions through Dynamical Systems
Qianxiao Li
T. Lin
Zuowei Shen
24
6
0
18 Aug 2022
Deep Sufficient Representation Learning via Mutual Information
Siming Zheng
Yuanyuan Lin
Jian Huang
SSL
DRL
47
0
0
21 Jul 2022
Convergence of Deep Neural Networks with General Activation Functions and Pooling
Wentao Huang
Yuesheng Xu
Haizhang Zhang
MLT
AI4CE
23
0
0
13 May 2022
How do noise tails impact on deep ReLU networks?
Jianqing Fan
Yihong Gu
Wen-Xin Zhou
ODL
38
13
0
20 Mar 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
A Deep Generative Approach to Conditional Sampling
Xingyu Zhou
Yuling Jiao
Jin Liu
Jian Huang
10
41
0
19 Oct 2021
Convergence of Deep Convolutional Neural Networks
Yuesheng Xu
Haizhang Zhang
MLT
40
44
0
28 Sep 2021
Convergence of Deep ReLU Networks
Yuesheng Xu
Haizhang Zhang
37
26
0
27 Jul 2021
Robust Nonparametric Regression with Deep Neural Networks
Guohao Shen
Yuling Jiao
Yuanyuan Lin
Jian Huang
OOD
33
13
0
21 Jul 2021
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
56
36
0
06 Jul 2021
Deep Generative Learning via Schrödinger Bridge
Gefei Wang
Yuling Jiao
Qiang Xu
Yang Wang
Can Yang
DiffM
OT
23
92
0
19 Jun 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
26
20
0
21 Mar 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
103
115
0
28 Feb 2021
Size and Depth Separation in Approximating Benign Functions with Neural Networks
Gal Vardi
Daniel Reichman
T. Pitassi
Ohad Shamir
28
7
0
30 Jan 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
36
29
0
11 Dec 2020
Neural Network Approximation: Three Hidden Layers Are Enough
Zuowei Shen
Haizhao Yang
Shijun Zhang
30
115
0
25 Oct 2020
Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks
Jonathan Ashbrock
A. Powell
MQ
28
5
0
25 Aug 2020
The Kolmogorov-Arnold representation theorem revisited
Johannes Schmidt-Hieber
30
125
0
31 Jul 2020
Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory
Tao Luo
Haizhao Yang
32
73
0
28 Jun 2020
Approximation in shift-invariant spaces with deep ReLU neural networks
Yunfei Yang
Zhen Li
Yang Wang
34
14
0
25 May 2020
Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation
Arnulf Jentzen
Timo Welti
17
15
0
03 Mar 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
67
247
0
09 Jan 2020
Deep Learning via Dynamical Systems: An Approximation Perspective
Qianxiao Li
Ting Lin
Zuowei Shen
AI4TS
AI4CE
22
107
0
22 Dec 2019
Nonlinear Approximation and (Deep) ReLU Networks
Ingrid Daubechies
Ronald A. DeVore
S. Foucart
Boris Hanin
G. Petrova
22
138
0
05 May 2019
1