ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.01930
  4. Cited By
Approximate Inference Turns Deep Networks into Gaussian Processes

Approximate Inference Turns Deep Networks into Gaussian Processes

5 June 2019
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Approximate Inference Turns Deep Networks into Gaussian Processes"

50 / 85 papers shown
Title
Confidence Sequences for Generalized Linear Models via Regret Analysis
Confidence Sequences for Generalized Linear Models via Regret Analysis
Eugenio Clerico
Hamish Flynn
W. Kotłowski
Gergely Neu
29
0
0
23 Apr 2025
Efficient Membership Inference Attacks by Bayesian Neural Network
Zhenlong Liu
Wenyu Jiang
Feng Zhou
Hongxin Wei
MIALM
71
1
0
10 Mar 2025
Pareto Set Learning for Multi-Objective Reinforcement Learning
Pareto Set Learning for Multi-Objective Reinforcement Learning
Erlong Liu
Yu-Chang Wu
Xiaobin Huang
Chengrui Gao
Ren-Jian Wang
Ke Xue
Chao Qian
OffRL
42
2
0
12 Jan 2025
Active Fine-Tuning of Generalist Policies
Active Fine-Tuning of Generalist Policies
Marco Bagatella
Jonas Hübotter
Georg Martius
Andreas Krause
32
0
0
07 Oct 2024
Realistic Extreme Behavior Generation for Improved AV Testing
Realistic Extreme Behavior Generation for Improved AV Testing
Robert Dyro
Matthew Foutter
Ruolin Li
L. D. Lillo
Edward Schmerling
Xilin Zhou
Marco Pavone
AAML
33
1
0
16 Sep 2024
Finite Neural Networks as Mixtures of Gaussian Processes: From Provable
  Error Bounds to Prior Selection
Finite Neural Networks as Mixtures of Gaussian Processes: From Provable Error Bounds to Prior Selection
Steven Adams
A. Patané
Morteza Lahijanian
Luca Laurenti
BDL
36
2
0
26 Jul 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
66
1
0
07 Jun 2024
Regularized KL-Divergence for Well-Defined Function-Space Variational
  Inference in Bayesian neural networks
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin
Robert Bamler
UQCV
BDL
43
2
0
06 Jun 2024
Reparameterization invariance in approximate Bayesian inference
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
47
8
0
05 Jun 2024
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of
  Large Language Models
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models
Emre Onal
Klemens Flöge
Emma Caldwell
A. Sheverdin
Vincent Fortuin
UQCV
BDL
45
9
0
06 May 2024
BayesJudge: Bayesian Kernel Language Modelling with Confidence
  Uncertainty in Legal Judgment Prediction
BayesJudge: Bayesian Kernel Language Modelling with Confidence Uncertainty in Legal Judgment Prediction
Ubaid Azam
Imran Razzak
Shelly Vishwakarma
Hakim Hacid
Dell Zhang
Shoaib Jameel
UQCV
ELM
BDL
32
0
0
16 Apr 2024
Function-space Parameterization of Neural Networks for Sequential
  Learning
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
34
5
0
16 Mar 2024
Continual Learning and Catastrophic Forgetting
Continual Learning and Catastrophic Forgetting
Gido M. van de Ven
Nicholas Soures
Dhireesha Kudithipudi
32
48
0
08 Mar 2024
A prediction rigidity formalism for low-cost uncertainties in trained
  neural networks
A prediction rigidity formalism for low-cost uncertainties in trained neural networks
Filippo Bigi
Sanggyu Chong
Michele Ceriotti
Federico Grasselli
49
5
0
04 Mar 2024
Active Few-Shot Fine-Tuning
Active Few-Shot Fine-Tuning
Jonas Hübotter
Bhavya Sukhija
Lenart Treven
Yarden As
Andreas Krause
42
1
0
13 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
40
27
0
01 Feb 2024
Tractable Function-Space Variational Inference in Bayesian Neural
  Networks
Tractable Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
80
39
0
28 Dec 2023
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Alexander M¨ollers
Alexander Immer
Elvin Isufi
Vincent Fortuin
SSL
BDL
UQCV
21
1
0
30 Nov 2023
Federated Transformed Learning for a Circular, Secure, and Tiny AI
Federated Transformed Learning for a Circular, Secure, and Tiny AI
Weisi Guo
S. Sun
Bin Li
Sam Blakeman
22
0
0
24 Nov 2023
The Memory Perturbation Equation: Understanding Model's Sensitivity to
  Data
The Memory Perturbation Equation: Understanding Model's Sensitivity to Data
Peter Nickl
Lu Xu
Dharmesh Tailor
Thomas Möllenhoff
Mohammad Emtiyaz Khan
24
10
0
30 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a
  variational perspective
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
32
2
0
16 Oct 2023
On the Disconnect Between Theory and Practice of Neural Networks: Limits
  of the NTK Perspective
On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective
Jonathan Wenger
Felix Dangel
Agustinus Kristiadi
33
0
0
29 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Sparse Function-space Representation of Neural Networks
Sparse Function-space Representation of Neural Networks
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
35
1
0
05 Sep 2023
Learning Expressive Priors for Generalization and Uncertainty Estimation
  in Neural Networks
Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks
Dominik Schnaus
Jongseok Lee
Daniel Cremers
Rudolph Triebel
UQCV
BDL
38
1
0
15 Jul 2023
Robust scalable initialization for Bayesian variational inference with
  multi-modal Laplace approximations
Robust scalable initialization for Bayesian variational inference with multi-modal Laplace approximations
Wyatt Bridgman
Reese E. Jones
Mohammad Khalil
29
1
0
12 Jul 2023
Online Laplace Model Selection Revisited
Online Laplace Model Selection Revisited
J. Lin
Javier Antorán
José Miguel Hernández-Lobato
BDL
32
3
0
12 Jul 2023
Function-Space Regularization for Deep Bayesian Classification
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
38
1
0
12 Jul 2023
Riemannian Laplace approximations for Bayesian neural networks
Riemannian Laplace approximations for Bayesian neural networks
Federico Bergamin
Pablo Moreno-Muñoz
Søren Hauberg
Georgios Arvanitidis
BDL
35
6
0
12 Jun 2023
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer
Tycho F. A. van der Ouderaa
Mark van der Wilk
Gunnar Rätsch
Bernhard Schölkopf
BDL
31
11
0
06 Jun 2023
Improving Neural Additive Models with Bayesian Principles
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
31
6
0
26 May 2023
Uncertainty and Structure in Neural Ordinary Differential Equations
Uncertainty and Structure in Neural Ordinary Differential Equations
Katharina Ott
Michael Tiemann
Philipp Hennig
AI4CE
26
5
0
22 May 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
17
8
0
17 Apr 2023
Bayesian inference with finitely wide neural networks
Bayesian inference with finitely wide neural networks
Chi-Ken Lu
BDL
37
0
0
06 Mar 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
UQCV
47
4
0
24 Feb 2023
Guided Deep Kernel Learning
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
31
5
0
19 Feb 2023
Probabilistic Circuits That Know What They Don't Know
Probabilistic Circuits That Know What They Don't Know
Fabrizio G. Ventola
Steven Braun
Zhongjie Yu
Martin Mundt
Kristian Kersting
UQCV
TPM
32
7
0
13 Feb 2023
M22: A Communication-Efficient Algorithm for Federated Learning Inspired
  by Rate-Distortion
M22: A Communication-Efficient Algorithm for Federated Learning Inspired by Rate-Distortion
Yangyi Liu
Stefano Rini
Sadaf Salehkalaibar
Jun Chen
FedML
21
4
0
23 Jan 2023
Introduction and Exemplars of Uncertainty Decomposition
Introduction and Exemplars of Uncertainty Decomposition
Shuo Chen
UD
UQCV
PER
30
0
0
17 Nov 2022
The Implicit Delta Method
The Implicit Delta Method
Nathan Kallus
James McInerney
23
1
0
11 Nov 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
47
19
0
23 Oct 2022
Bridging the Gap Between Target Networks and Functional Regularization
Alexandre Piché
Valentin Thomas
Joseph Marino
Rafael Pardiñas
Gian Maria Marconi
C. Pal
Mohammad Emtiyaz Khan
14
1
0
21 Oct 2022
Sampling-based inference for large linear models, with application to
  linearised Laplace
Sampling-based inference for large linear models, with application to linearised Laplace
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric T. Nalisnick
David Janz
José Miguel Hernández-Lobato
BDL
27
17
0
10 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent
  Kernel
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
26
4
0
30 Sep 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for
  Parametric PDEs
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
15
9
0
02 Aug 2022
Cold Posteriors through PAC-Bayes
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
23
5
0
22 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
27
28
0
17 Jun 2022
Fast Finite Width Neural Tangent Kernel
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
20
53
0
17 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
21
48
0
01 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
24
18
0
30 Apr 2022
12
Next