ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.01578
  4. Cited By
Effective LHC measurements with matrix elements and machine learning

Effective LHC measurements with matrix elements and machine learning

4 June 2019
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
ArXiv (abs)PDFHTML

Papers citing "Effective LHC measurements with matrix elements and machine learning"

26 / 26 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
301
30,157
0
01 Mar 2022
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
163
881
0
02 Oct 2018
Likelihood-free inference with an improved cross-entropy estimator
Likelihood-free inference with an improved cross-entropy estimator
M. Stoye
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
FedMLUQCVBDL
163
48
0
02 Aug 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CETPM
169
181
0
30 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
548
370
0
18 May 2018
A Guide to Constraining Effective Field Theories with Machine Learning
A Guide to Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
243
141
0
30 Apr 2018
Constraining Effective Field Theories with Machine Learning
Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
AI4CE
115
152
0
30 Apr 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRLAI4CE
156
446
0
03 Apr 2018
Adversarial Variational Optimization of Non-Differentiable Simulators
Adversarial Variational Optimization of Non-Differentiable Simulators
Gilles Louppe
Joeri Hermans
Kyle Cranmer
GAN
162
66
0
22 Jul 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
229
1,360
0
19 May 2017
Likelihood-free inference by ratio estimation
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
224
151
0
30 Nov 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
205
417
0
11 Oct 2016
WaveNet: A Generative Model for Raw Audio
WaveNet: A Generative Model for Raw Audio
Aaron van den Oord
Sander Dieleman
Heiga Zen
Karen Simonyan
Oriol Vinyals
Alex Graves
Nal Kalchbrenner
A. Senior
Koray Kavukcuoglu
DiffM
413
7,425
0
12 Sep 2016
Conditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN Decoders
Aaron van den Oord
Nal Kalchbrenner
Oriol Vinyals
L. Espeholt
Alex Graves
Koray Kavukcuoglu
VLM
237
2,520
0
16 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,723
0
26 May 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
189
158
0
20 May 2016
Neural Autoregressive Distribution Estimation
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
90
314
0
07 May 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
165
110
0
22 Feb 2016
Parameterized Machine Learning for High-Energy Physics
Parameterized Machine Learning for High-Energy Physics
Pierre Baldi
Kyle Cranmer
Taylor Faucett
Peter Sadowski
D. Whiteson
AI4CEPINN
90
242
0
28 Jan 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSegGAN
495
2,579
0
25 Jan 2016
Approximating Likelihood Ratios with Calibrated Discriminative
  Classifiers
Approximating Likelihood Ratios with Calibrated Discriminative Classifiers
Kyle Cranmer
J. Pavez
Gilles Louppe
152
227
0
06 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
324
4,198
0
21 May 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OODSyDaUQCV
191
874
0
12 Feb 2015
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
146
2,269
0
30 Oct 2014
Likelihood-free inference via classification
Likelihood-free inference via classification
Michael U. Gutmann
Ritabrata Dutta
Samuel Kaski
J. Corander
221
63
0
18 Jul 2014
Approximate Bayesian Computation via Regression Density Estimation
Approximate Bayesian Computation via Regression Density Estimation
Yanan Fan
David J. Nott
Scott A. Sisson
177
62
0
06 Dec 2012
1