Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13725
Cited By
Are Labels Required for Improving Adversarial Robustness?
31 May 2019
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Are Labels Required for Improving Adversarial Robustness?"
50 / 108 papers shown
Title
TAROT: Towards Essentially Domain-Invariant Robustness with Theoretical Justification
Dongyoon Yang
Jihu Lee
Yongdai Kim
31
0
0
10 May 2025
Revisiting the Relationship between Adversarial and Clean Training: Why Clean Training Can Make Adversarial Training Better
MingWei Zhou
Xiaobing Pei
AAML
235
0
0
30 Mar 2025
Weakly Supervised Contrastive Adversarial Training for Learning Robust Features from Semi-supervised Data
Lilin Zhang
Chengpei Wu
Ning Yang
39
0
0
14 Mar 2025
Generating Less Certain Adversarial Examples Improves Robust Generalization
Minxing Zhang
Michael Backes
Xiao Zhang
AAML
40
1
0
06 Oct 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
52
51
0
18 May 2023
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for Meta-Learning
Jun Shu
Xiang Yuan
Deyu Meng
Zongben Xu
35
4
0
13 May 2023
Federated Learning without Full Labels: A Survey
Yilun Jin
Yang Liu
Kai Chen
Qian Yang
FedML
17
26
0
25 Mar 2023
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
49
14
0
24 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
44
34
0
19 Mar 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
37
8
0
17 Mar 2023
Certified Robust Neural Networks: Generalization and Corruption Resistance
Amine Bennouna
Ryan Lucas
Bart P. G. Van Parys
45
10
0
03 Mar 2023
Backdoor Learning for NLP: Recent Advances, Challenges, and Future Research Directions
Marwan Omar
SILM
AAML
35
20
0
14 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min Lin
Weiwei Liu
Shuicheng Yan
DiffM
26
210
0
09 Feb 2023
Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset Selection
Xilie Xu
Jingfeng Zhang
Feng Liu
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
26
16
0
08 Feb 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
21
50
0
24 Jan 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
29
5
0
15 Dec 2022
Generative Robust Classification
Xuwang Yin
TPM
33
0
0
14 Dec 2022
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Chengzhi Mao
Scott Geng
Junfeng Yang
Xin Eric Wang
Carl Vondrick
VLM
44
60
0
14 Dec 2022
Deep Fake Detection, Deterrence and Response: Challenges and Opportunities
Amin Azmoodeh
Ali Dehghantanha
45
2
0
26 Nov 2022
Reliable Robustness Evaluation via Automatically Constructed Attack Ensembles
Shengcai Liu
Fu Peng
Jiaheng Zhang
AAML
39
11
0
23 Nov 2022
Improving Adversarial Robustness with Self-Paced Hard-Class Pair Reweighting
Peng-Fei Hou
Jie Han
Xingyu Li
AAML
OOD
23
11
0
26 Oct 2022
On the Adversarial Robustness of Mixture of Experts
J. Puigcerver
Rodolphe Jenatton
C. Riquelme
Pranjal Awasthi
Srinadh Bhojanapalli
OOD
AAML
MoE
48
18
0
19 Oct 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
29
2
0
27 Sep 2022
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Dong Huang
Qi Bu
Yuhao Qing
Haowen Pi
Sen Wang
Heming Cui
OOD
AAML
39
0
0
17 Aug 2022
Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness
Chaoning Zhang
Kang Zhang
Chenshuang Zhang
Axi Niu
Jiu Feng
Chang D. Yoo
In So Kweon
SSL
40
24
0
22 Jul 2022
Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift
Ananya Kumar
Tengyu Ma
Percy Liang
Aditi Raghunathan
UQCV
OODD
OOD
49
38
0
18 Jul 2022
Adversarial Contrastive Learning via Asymmetric InfoNCE
Qiying Yu
Jieming Lou
Xianyuan Zhan
Qizhang Li
W. Zuo
Yang Liu
Jingjing Liu
AAML
41
23
0
18 Jul 2022
RUSH: Robust Contrastive Learning via Randomized Smoothing
Yijiang Pang
Boyang Liu
Jiayu Zhou
OOD
AAML
24
1
0
11 Jul 2022
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
CLL
26
4
0
15 Jun 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
35
12
0
13 Jun 2022
Robust Weight Perturbation for Adversarial Training
Chaojian Yu
Bo Han
Biwei Huang
Li Shen
Shiming Ge
Bo Du
Tongliang Liu
AAML
27
33
0
30 May 2022
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Yimeng Zhang
Yuguang Yao
Jinghan Jia
Jinfeng Yi
Min-Fong Hong
Shiyu Chang
Sijia Liu
AAML
26
33
0
27 Mar 2022
Robustness through Cognitive Dissociation Mitigation in Contrastive Adversarial Training
Adir Rahamim
I. Naeh
AAML
35
1
0
16 Mar 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
15
18
0
03 Mar 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
40
120
0
21 Feb 2022
Holistic Adversarial Robustness of Deep Learning Models
Pin-Yu Chen
Sijia Liu
AAML
54
16
0
15 Feb 2022
A Characterization of Semi-Supervised Adversarially-Robust PAC Learnability
Idan Attias
Steve Hanneke
Yishay Mansour
35
15
0
11 Feb 2022
Backdoor Defense via Decoupling the Training Process
Kunzhe Huang
Yiming Li
Baoyuan Wu
Zhan Qin
Kui Ren
AAML
FedML
29
187
0
05 Feb 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
32
4
0
03 Feb 2022
Improving Robustness by Enhancing Weak Subnets
Yong Guo
David Stutz
Bernt Schiele
AAML
35
15
0
30 Jan 2022
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
28
13
0
14 Dec 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
34
271
0
09 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
43
17
0
09 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
27
26
0
03 Nov 2021
Transductive Robust Learning Guarantees
Omar Montasser
Steve Hanneke
Nathan Srebro
26
13
0
20 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
36
294
0
18 Oct 2021
Provably Efficient Black-Box Action Poisoning Attacks Against Reinforcement Learning
Guanlin Liu
Lifeng Lai
AAML
32
34
0
09 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
48
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
69
18
0
07 Oct 2021
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
32
65
0
20 Aug 2021
1
2
3
Next