Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13662
Cited By
On the Fairness of Disentangled Representations
31 May 2019
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaML
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Fairness of Disentangled Representations"
50 / 76 papers shown
Title
Fair Text Classification via Transferable Representations
Thibaud Leteno
Michael Perrot
Charlotte Laclau
Antoine Gourru
Christophe Gravier
FaML
88
0
0
10 Mar 2025
FairJob: A Real-World Dataset for Fairness in Online Systems
Mariia Vladimirova
Federico Pavone
Eustache Diemert
47
1
0
03 Jul 2024
Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models
Nishad Singhi
Jae Myung Kim
Karsten Roth
Zeynep Akata
50
1
0
02 May 2024
Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks
R. Ramachandranpillai
Md Fahim Sikder
David Bergstrom
Fredrik Heintz
SyDa
38
6
0
21 Apr 2024
Towards Controllable Time Series Generation
Yifan Bao
Yihao Ang
Qiang Huang
Anthony K. H. Tung
Zhiyong Huang
DiffM
46
4
0
06 Mar 2024
Complexity Matters: Dynamics of Feature Learning in the Presence of Spurious Correlations
GuanWen Qiu
Da Kuang
Surbhi Goel
32
8
0
05 Mar 2024
Revisiting Disentanglement in Downstream Tasks: A Study on Its Necessity for Abstract Visual Reasoning
Ruiqian Nai
Zixin Wen
Ji Li
Yuanzhi Li
Yang Gao
46
2
0
01 Mar 2024
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
37
4
0
08 Nov 2023
Compositional Generalization from First Principles
Thaddäus Wiedemer
Prasanna Mayilvahanan
Matthias Bethge
Wieland Brendel
OCL
34
37
0
10 Jul 2023
Measuring Bias in AI Models: An Statistical Approach Introducing N-Sigma
Daniel DeAlcala
Ignacio Serna
Aythami Morales
Julian Fierrez
J. Ortega-Garcia
26
6
0
26 Apr 2023
Beyond Accuracy: A Critical Review of Fairness in Machine Learning for Mobile and Wearable Computing
Sofia Yfantidou
Marios Constantinides
Dimitris Spathis
Athena Vakali
Daniele Quercia
F. Kawsar
HAI
FaML
28
18
0
27 Mar 2023
Fair Off-Policy Learning from Observational Data
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
FaML
OffRL
25
6
0
15 Mar 2023
Addressing Biases in the Texts using an End-to-End Pipeline Approach
Shaina Raza
Syed Raza Bashir
Sneha
Urooj Qamar
38
0
0
13 Mar 2023
Simple Disentanglement of Style and Content in Visual Representations
Lilian Ngweta
Subha Maity
Alex Gittens
Yuekai Sun
Mikhail Yurochkin
CoGe
DRL
32
7
0
20 Feb 2023
SimFair: A Unified Framework for Fairness-Aware Multi-Label Classification
Tianci Liu
Haoyu Wang
Yaqing Wang
Xiaoqian Wang
Lu Su
Jing Gao
38
6
0
19 Feb 2023
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
35
10
0
01 Jan 2023
ContraFeat: Contrasting Deep Features for Semantic Discovery
Xinqi Zhu
Chang Xu
Dacheng Tao
DRL
26
2
0
14 Dec 2022
Representational dissimilarity metric spaces for stochastic neural networks
Lyndon Duong
Jingyang Zhou
Josue Nassar
Jules Berman
Jeroen Olieslagers
Alex H. Williams
30
19
0
21 Nov 2022
Decomposing Counterfactual Explanations for Consequential Decision Making
Martin Pawelczyk
Lea Tiyavorabun
Gjergji Kasneci
CML
26
1
0
03 Nov 2022
Fair Visual Recognition via Intervention with Proxy Features
Yi Zhang
Jitao Sang
Junyan Wang
23
1
0
02 Nov 2022
COFFEE: Counterfactual Fairness for Personalized Text Generation in Explainable Recommendation
Nan Wang
Qifan Wang
Yi-Chia Wang
Maziar Sanjabi
Jingzhou Liu
Hamed Firooz
Hongning Wang
Shaoliang Nie
28
6
0
14 Oct 2022
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
41
33
0
13 Oct 2022
Fair Inference for Discrete Latent Variable Models
Rashidul Islam
Shimei Pan
James R. Foulds
FaML
46
1
0
15 Sep 2022
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GAN
DRL
26
11
0
15 Sep 2022
Fairness in Forecasting of Observations of Linear Dynamical Systems
Quan Zhou
Jakub Mareˇcek
Robert Shorten
AI4TS
45
5
0
12 Sep 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
62
71
0
19 Jul 2022
Certifying Some Distributional Fairness with Subpopulation Decomposition
Mintong Kang
Linyi Li
Maurice Weber
Yang Liu
Ce Zhang
Bo-wen Li
OOD
56
15
0
31 May 2022
Fair Representation Learning through Implicit Path Alignment
Changjian Shui
Qi Chen
Jiaqi Li
Boyu Wang
Christian Gagné
43
28
0
26 May 2022
How do Variational Autoencoders Learn? Insights from Representational Similarity
Lisa Bonheme
M. Grzes
CoGe
SSL
DRL
35
10
0
17 May 2022
Neural Contrastive Clustering: Fully Unsupervised Bias Reduction for Sentiment Classification
Jared Mowery
SSL
33
0
0
22 Apr 2022
Is Fairness Only Metric Deep? Evaluating and Addressing Subgroup Gaps in Deep Metric Learning
Natalie Dullerud
Karsten Roth
Kimia Hamidieh
Nicolas Papernot
Marzyeh Ghassemi
37
15
0
23 Mar 2022
Robustness and Adaptation to Hidden Factors of Variation
William Paul
Philippe Burlina
29
0
0
03 Mar 2022
Bayes-Optimal Classifiers under Group Fairness
Xianli Zeng
Yan Sun
Guang Cheng
FaML
21
23
0
20 Feb 2022
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
29
3
0
01 Feb 2022
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
23
1
0
20 Dec 2021
On Fair Selection in the Presence of Implicit and Differential Variance
V. Emelianov
Nicolas Gast
Krishna P. Gummadi
P. Loiseau
32
21
0
10 Dec 2021
Latent Space Smoothing for Individually Fair Representations
Momchil Peychev
Anian Ruoss
Mislav Balunović
Maximilian Baader
Martin Vechev
FaML
36
19
0
26 Nov 2021
Modeling Techniques for Machine Learning Fairness: A Survey
Mingyang Wan
Daochen Zha
Ninghao Liu
Na Zou
SyDa
FaML
30
36
0
04 Nov 2021
Group-disentangled Representation Learning with Weakly-Supervised Regularization
Linh-Tam Tran
Amir Hosein Khasahmadi
Aditya Sanghi
Saeid Asgari Taghanaki
DRL
34
1
0
23 Oct 2021
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
31
45
0
20 Oct 2021
EditVAE: Unsupervised Part-Aware Controllable 3D Point Cloud Shape Generation
Shidi Li
Miaomiao Liu
Christian J. Walder
3DPC
54
28
0
13 Oct 2021
On the relationship between disentanglement and multi-task learning
Lukasz Maziarka
A. Nowak
Maciej Wołczyk
Andrzej Bedychaj
OOD
DRL
27
3
0
07 Oct 2021
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
19
6
0
26 Sep 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
49
17
0
30 Jun 2021
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
19
36
0
10 Jun 2021
Fair Representations by Compression
Xavier Gitiaux
Huzefa Rangwala
FaML
30
14
0
28 May 2021
Recovering Barabási-Albert Parameters of Graphs through Disentanglement
Cristina Guzman
Daphna Keidar
Tristan Meynier
Andreas Opedal
Niklas Stoehr
19
0
0
03 May 2021
Discover the Unknown Biased Attribute of an Image Classifier
Zhiheng Li
Chenliang Xu
30
50
0
29 Apr 2021
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
56
38
0
07 Apr 2021
1
2
Next