ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12506
  4. Cited By
Are Disentangled Representations Helpful for Abstract Visual Reasoning?

Are Disentangled Representations Helpful for Abstract Visual Reasoning?

29 May 2019
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
ArXivPDFHTML

Papers citing "Are Disentangled Representations Helpful for Abstract Visual Reasoning?"

10 / 60 papers shown
Title
Learning Disentangled Representations with Latent Variation
  Predictability
Learning Disentangled Representations with Latent Variation Predictability
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
22
26
0
25 Jul 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Lisa Lee
Benjamin Eysenbach
Ruslan Salakhutdinov
S. Gu
Chelsea Finn
SSL
22
26
0
06 Apr 2020
q-VAE for Disentangled Representation Learning and Latent Dynamical
  Systems
q-VAE for Disentangled Representation Learning and Latent Dynamical Systems
Taisuke Kobayashis
BDL
DRL
22
17
0
04 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
How a minimal learning agent can infer the existence of unobserved
  variables in a complex environment
How a minimal learning agent can infer the existence of unobserved variables in a complex environment
K. Ried
B. Eva
Thomas Müller
H. Briegel
14
15
0
15 Oct 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
33
134
0
07 Jun 2019
Unsupervised Model Selection for Variational Disentangled Representation
  Learning
Unsupervised Model Selection for Variational Disentangled Representation Learning
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
OOD
DRL
11
78
0
29 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
34
123
0
03 May 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
24
17
0
15 Apr 2019
Previous
12