ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12506
  4. Cited By
Are Disentangled Representations Helpful for Abstract Visual Reasoning?

Are Disentangled Representations Helpful for Abstract Visual Reasoning?

29 May 2019
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
ArXivPDFHTML

Papers citing "Are Disentangled Representations Helpful for Abstract Visual Reasoning?"

50 / 60 papers shown
Title
When does compositional structure yield compositional generalization? A kernel theory
When does compositional structure yield compositional generalization? A kernel theory
Samuel Lippl
Kim Stachenfeld
NAI
CoGe
73
6
0
26 May 2024
Learned feature representations are biased by complexity, learning
  order, position, and more
Learned feature representations are biased by complexity, learning order, position, and more
Andrew Kyle Lampinen
Stephanie C. Y. Chan
Katherine Hermann
AI4CE
FaML
SSL
OOD
40
6
0
09 May 2024
Revisiting Disentanglement in Downstream Tasks: A Study on Its Necessity
  for Abstract Visual Reasoning
Revisiting Disentanglement in Downstream Tasks: A Study on Its Necessity for Abstract Visual Reasoning
Ruiqian Nai
Zixin Wen
Ji Li
Yuanzhi Li
Yang Gao
49
2
0
01 Mar 2024
Towards a Unified Framework of Contrastive Learning for Disentangled
  Representations
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
37
4
0
08 Nov 2023
Measuring the Effect of Causal Disentanglement on the Adversarial
  Robustness of Neural Network Models
Measuring the Effect of Causal Disentanglement on the Adversarial Robustness of Neural Network Models
Preben Ness
D. Marijan
Sunanda Bose
CML
31
0
0
21 Aug 2023
Abstracting Concept-Changing Rules for Solving Raven's Progressive
  Matrix Problems
Abstracting Concept-Changing Rules for Solving Raven's Progressive Matrix Problems
Fan Shi
Bin Li
Xiangyang Xue
LRM
36
9
0
15 Jul 2023
Compositional Generalization from First Principles
Compositional Generalization from First Principles
Thaddäus Wiedemer
Prasanna Mayilvahanan
Matthias Bethge
Wieland Brendel
OCL
34
37
0
10 Jul 2023
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set
  Alignment
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Peng Jin
Hao Li
Ze-Long Cheng
Jinfa Huang
Zhennan Wang
Li-ming Yuan
Chang-rui Liu
Jie Chen
38
32
0
20 May 2023
A multimodal dynamical variational autoencoder for audiovisual speech
  representation learning
A multimodal dynamical variational autoencoder for audiovisual speech representation learning
Samir Sadok
Simon Leglaive
Laurent Girin
Xavier Alameda-Pineda
Renaud Séguier
38
11
0
05 May 2023
Visual Referential Games Further the Emergence of Disentangled
  Representations
Visual Referential Games Further the Emergence of Disentangled Representations
Kevin Denamganai
S. Missaoui
James Alfred Walker
OCL
CoGe
16
4
0
27 Apr 2023
Factorizers for Distributed Sparse Block Codes
Factorizers for Distributed Sparse Block Codes
Michael Hersche
Aleksandar Terzić
G. Karunaratne
Jovin Langenegger
Angeline Pouget
G. Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
39
4
0
24 Mar 2023
Abstract Visual Reasoning: An Algebraic Approach for Solving Raven's
  Progressive Matrices
Abstract Visual Reasoning: An Algebraic Approach for Solving Raven's Progressive Matrices
Jingyi Xu
Tushar Vaidya
Y. Blankenship
Saket Chandra
Zhangsheng Lai
Kai Fong Ernest Chong
45
8
0
21 Mar 2023
Learning to reason over visual objects
Learning to reason over visual objects
S. S. Mondal
Taylor Webb
Jonathan D. Cohen
OCL
33
29
0
03 Mar 2023
A Survey of Methods, Challenges and Perspectives in Causality
A Survey of Methods, Challenges and Perspectives in Causality
Gaël Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
44
13
0
01 Feb 2023
Causal Triplet: An Open Challenge for Intervention-centric Causal
  Representation Learning
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning
Yuejiang Liu
Alexandre Alahi
Chris Russell
Max Horn
Dominik Zietlow
Bernhard Schölkopf
Francesco Locatello
CML
59
22
0
12 Jan 2023
Disentangled Representation Learning
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
39
78
0
21 Nov 2022
Mechanistic Mode Connectivity
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
34
45
0
15 Nov 2022
Multi-Viewpoint and Multi-Evaluation with Felicitous Inductive Bias
  Boost Machine Abstract Reasoning Ability
Multi-Viewpoint and Multi-Evaluation with Felicitous Inductive Bias Boost Machine Abstract Reasoning Ability
Qinglai Wei
Diancheng Chen
Beiming Yuan
32
10
0
26 Oct 2022
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent
  Factor Swapping
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent Factor Swapping
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
SSL
CoGe
DRL
35
4
0
21 Sep 2022
Disentangling Shape and Pose for Object-Centric Deep Active Inference
  Models
Disentangling Shape and Pose for Object-Centric Deep Active Inference Models
Stefano Ferraro
Toon Van de Maele
Pietro Mazzaglia
Tim Verbelen
Bart Dhoedt
3DV
OCL
DRL
34
8
0
16 Sep 2022
Weakly Supervised Invariant Representation Learning Via Disentangling
  Known and Unknown Nuisance Factors
Weakly Supervised Invariant Representation Learning Via Disentangling Known and Unknown Nuisance Factors
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
32
1
0
15 Sep 2022
Comparing the latent space of generative models
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
26
12
0
14 Jul 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
111
64
0
31 May 2022
Blackbird's language matrices (BLMs): a new benchmark to investigate
  disentangled generalisation in neural networks
Blackbird's language matrices (BLMs): a new benchmark to investigate disentangled generalisation in neural networks
Paola Merlo
A. An
M. A. Rodriguez
38
9
0
22 May 2022
Lost in Latent Space: Disentangled Models and the Challenge of
  Combinatorial Generalisation
Lost in Latent Space: Disentangled Models and the Challenge of Combinatorial Generalisation
M. Montero
J. Bowers
Rui Ponte Costa
Casimir J. H. Ludwig
Gaurav Malhotra
DRL
CoGe
32
11
0
05 Apr 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
33
44
0
17 Mar 2022
Right for the Right Latent Factors: Debiasing Generative Models via
  Disentanglement
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
29
3
0
01 Feb 2022
Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's
  Progressive Matrices
Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's Progressive Matrices
Mikolaj Malkiñski
Jacek Mańdziuk
125
42
0
28 Jan 2022
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
Latte: Cross-framework Python Package for Evaluation of Latent-Based
  Generative Models
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
23
1
0
20 Dec 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
36
67
0
28 Oct 2021
Group-disentangled Representation Learning with Weakly-Supervised
  Regularization
Group-disentangled Representation Learning with Weakly-Supervised Regularization
Linh-Tam Tran
Amir Hosein Khasahmadi
Aditya Sanghi
Saeid Asgari Taghanaki
DRL
36
1
0
23 Oct 2021
On the relationship between disentanglement and multi-task learning
On the relationship between disentanglement and multi-task learning
Lukasz Maziarka
A. Nowak
Maciej Wołczyk
Andrzej Bedychaj
OOD
DRL
27
3
0
07 Oct 2021
Be More Active! Understanding the Differences between Mean and Sampled
  Representations of Variational Autoencoders
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
21
6
0
26 Sep 2021
Discovery of New Multi-Level Features for Domain Generalization via
  Knowledge Corruption
Discovery of New Multi-Level Features for Domain Generalization via Knowledge Corruption
A. Frikha
Denis Krompass
Volker Tresp
OOD
35
1
0
09 Sep 2021
Unsupervised Disentanglement without Autoencoding: Pitfalls and Future
  Directions
Unsupervised Disentanglement without Autoencoding: Pitfalls and Future Directions
Andrea Burns
Aaron Sarna
Dilip Krishnan
Aaron Maschinot
CoGe
DRL
SSL
50
4
0
14 Aug 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
49
17
0
30 Jun 2021
A Novel Estimator of Mutual Information for Learning to Disentangle
  Textual Representations
A Novel Estimator of Mutual Information for Learning to Disentangle Textual Representations
Pierre Colombo
Chloé Clavel
Pablo Piantanida
AAML
DRL
26
50
0
06 May 2021
Recovering Barabási-Albert Parameters of Graphs through
  Disentanglement
Recovering Barabási-Albert Parameters of Graphs through Disentanglement
Cristina Guzman
Daphna Keidar
Tristan Meynier
Andreas Opedal
Niklas Stoehr
21
0
0
03 May 2021
Where and What? Examining Interpretable Disentangled Representations
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
58
38
0
07 Apr 2021
Towards Building A Group-based Unsupervised Representation
  Disentanglement Framework
Towards Building A Group-based Unsupervised Representation Disentanglement Framework
Tao Yang
Xuanchi Ren
Yuwang Wang
W. Zeng
Nanning Zheng
CoGe
DRL
24
27
0
20 Feb 2021
CDPAM: Contrastive learning for perceptual audio similarity
CDPAM: Contrastive learning for perceptual audio similarity
Pranay Manocha
Zeyu Jin
Richard Y. Zhang
Adam Finkelstein
27
68
0
09 Feb 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
28
81
0
16 Dec 2020
Demystifying Deep Neural Networks Through Interpretation: A Survey
Demystifying Deep Neural Networks Through Interpretation: A Survey
Giang Dao
Minwoo Lee
FaML
FAtt
22
1
0
13 Dec 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
35
80
0
27 Oct 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
14
66
0
27 Oct 2020
Robust Disentanglement of a Few Factors at a Time
Robust Disentanglement of a Few Factors at a Time
Benjamin Estermann
Markus Marks
M. Yanik
CoGe
OOD
DRL
13
3
0
26 Oct 2020
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
30
4
0
05 Oct 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
29
20
0
28 Jul 2020
Data-efficient visuomotor policy training using reinforcement learning
  and generative models
Data-efficient visuomotor policy training using reinforcement learning and generative models
Ali Ghadirzadeh
Petra Poklukar
Ville Kyrki
Danica Kragic
Mårten Björkman
OffRL
44
9
0
26 Jul 2020
12
Next