ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.09883
  4. Cited By
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in
  the Diffusion Limit

Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit

23 May 2019
Belinda Tzen
Maxim Raginsky
    DiffM
ArXivPDFHTML

Papers citing "Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit"

50 / 64 papers shown
Title
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
C. Safta
Reese E. Jones
Ravi G. Patel
Raelynn Wonnacot
Dan S. Bolintineanu
Craig M. Hamel
S. Kramer
BDL
41
0
0
21 Apr 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
57
0
0
16 Apr 2025
Neural ODE Transformers: Analyzing Internal Dynamics and Adaptive Fine-tuning
Neural ODE Transformers: Analyzing Internal Dynamics and Adaptive Fine-tuning
Anh Tong
Thanh Nguyen-Tang
Dongeun Lee
Duc Nguyen
Toan M. Tran
David Hall
Cheongwoong Kang
Jaesik Choi
40
0
0
03 Mar 2025
Neural Guided Diffusion Bridges
Neural Guided Diffusion Bridges
Gefan Yang
Frank van der Meulen
Stefan Sommer
DiffM
65
0
0
17 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
67
3
0
10 Jan 2025
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Byoungwoo Park
Hyungi Lee
Juho Lee
AI4TS
51
0
0
08 Oct 2024
An Efficient On-Policy Deep Learning Framework for Stochastic Optimal Control
An Efficient On-Policy Deep Learning Framework for Stochastic Optimal Control
Mengjian Hua
Matthieu Laurière
Eric Vanden-Eijnden
41
3
0
07 Oct 2024
Efficient Training of Neural Stochastic Differential Equations by Matching Finite Dimensional Distributions
Efficient Training of Neural Stochastic Differential Equations by Matching Finite Dimensional Distributions
Jianxin Zhang
Josh Viktorov
Doosan Jung
Emily Pitler
DiffM
51
0
0
04 Oct 2024
Adaptive teachers for amortized samplers
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
264
4
0
02 Oct 2024
Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold
  learning via well-posed generative flows
Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold learning via well-posed generative flows
Hyemin Gu
Markos A. Katsoulakis
Luc Rey-Bellet
Benjamin J. Zhang
50
3
0
16 Jul 2024
ISR: Invertible Symbolic Regression
ISR: Invertible Symbolic Regression
Tony Tohme
M. J. Khojasteh
Mohsen Sadr
Florian Meyer
Kamal Youcef-Toumi
51
0
0
10 May 2024
Derivative-based regularization for regression
Derivative-based regularization for regression
Enrico Lopedoto
Maksim Shekhunov
Vitaly Aksenov
K. Salako
Tillman Weyde
34
0
0
01 May 2024
Variational Sampling of Temporal Trajectories
Variational Sampling of Temporal Trajectories
Jurijs Nazarovs
Zhichun Huang
Xingjian Zhen
Sourav Pal
Rudrasis Chakraborty
Vikas Singh
24
0
0
18 Mar 2024
Stable Neural Stochastic Differential Equations in Analyzing Irregular
  Time Series Data
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
YongKyung Oh
Dongyoung Lim
Sungil Kim
AI4TS
47
13
0
22 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
45
42
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
71
18
0
07 Feb 2024
On the Parallel Complexity of Multilevel Monte Carlo in Stochastic
  Gradient Descent
On the Parallel Complexity of Multilevel Monte Carlo in Stochastic Gradient Descent
Kei Ishikawa
BDL
63
0
0
03 Oct 2023
Faster Training of Neural ODEs Using Gauß-Legendre Quadrature
Faster Training of Neural ODEs Using Gauß-Legendre Quadrature
Alexander Norcliffe
M. Deisenroth
33
3
0
21 Aug 2023
MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY
  Estimation
MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY Estimation
Tony Tohme
Mohsen Sadr
K. Youcef-Toumi
N. Hadjiconstantinou
35
3
0
07 Jun 2023
Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural
  Stochastic Differential Equations
Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations
Anudhyan Boral
Z. Y. Wan
Leonardo Zepeda-Núñez
James Lottes
Qing Wang
Yi-fan Chen
John R. Anderson
Fei Sha
AI4CE
PINN
37
11
0
01 Jun 2023
Non-adversarial training of Neural SDEs with signature kernel scores
Non-adversarial training of Neural SDEs with signature kernel scores
Zacharia Issa
Blanka Horvath
M. Lemercier
C. Salvi
AI4TS
48
24
0
25 May 2023
Cheap and Deterministic Inference for Deep State-Space Models of
  Interacting Dynamical Systems
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
38
6
0
02 May 2023
A Survey on Solving and Discovering Differential Equations Using Deep
  Neural Networks
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
45
5
0
26 Apr 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
31
1
0
24 Mar 2023
Discouraging posterior collapse in hierarchical Variational Autoencoders
  using context
Discouraging posterior collapse in hierarchical Variational Autoencoders using context
Anna Kuzina
Jakub M. Tomczak
BDL
DRL
28
1
0
20 Feb 2023
Using Intermediate Forward Iterates for Intermediate Generator
  Optimization
Using Intermediate Forward Iterates for Intermediate Generator Optimization
Harshit Mishra
Jurijs Nazarovs
Manmohan Dogra
Sathya Ravi
DiffM
27
0
0
05 Feb 2023
Learning Data Representations with Joint Diffusion Models
Learning Data Representations with Joint Diffusion Models
Kamil Deja
Tomasz Trzciñski
Jakub M. Tomczak
DiffM
30
15
0
31 Jan 2023
Convergence Analysis for Training Stochastic Neural Networks via
  Stochastic Gradient Descent
Convergence Analysis for Training Stochastic Neural Networks via Stochastic Gradient Descent
Richard Archibald
F. Bao
Yanzhao Cao
Hui‐Jie Sun
57
2
0
17 Dec 2022
MAGVIT: Masked Generative Video Transformer
MAGVIT: Masked Generative Video Transformer
Lijun Yu
Yong Cheng
Kihyuk Sohn
José Lezama
Han Zhang
...
Alexander G. Hauptmann
Ming-Hsuan Yang
Yuan Hao
Irfan Essa
Lu Jiang
DiffM
VGen
40
228
0
10 Dec 2022
Nonlinear controllability and function representation by neural
  stochastic differential equations
Nonlinear controllability and function representation by neural stochastic differential equations
Tanya Veeravalli
Maxim Raginsky
DiffM
32
2
0
01 Dec 2022
Neural Langevin Dynamics: towards interpretable Neural Stochastic
  Differential Equations
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
35
1
0
17 Nov 2022
Imagen Video: High Definition Video Generation with Diffusion Models
Imagen Video: High Definition Video Generation with Diffusion Models
Jonathan Ho
William Chan
Chitwan Saharia
Jay Whang
Ruiqi Gao
...
Diederik P. Kingma
Ben Poole
Mohammad Norouzi
David J. Fleet
Tim Salimans
VGen
67
1,480
0
05 Oct 2022
Unifying Generative Models with GFlowNets and Beyond
Unifying Generative Models with GFlowNets and Beyond
Dinghuai Zhang
Ricky T. Q. Chen
Nikolay Malkin
Yoshua Bengio
BDL
AI4CE
59
25
0
06 Sep 2022
Continuous-time Particle Filtering for Latent Stochastic Differential
  Equations
Continuous-time Particle Filtering for Latent Stochastic Differential Equations
Ruizhi Deng
Greg Mori
Andreas M. Lehrmann
BDL
30
0
0
01 Sep 2022
E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations
Jongwan Kim
Dongjin Lee
Byunggook Na
Seongsik Park
Jeonghee Jo
Sung-Hoon Yoon
42
0
0
15 Jun 2022
On Analyzing Generative and Denoising Capabilities of Diffusion-based
  Deep Generative Models
On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
Kamil Deja
Anna Kuzina
Tomasz Trzciñski
Jakub M. Tomczak
DiffM
39
25
0
31 May 2022
Realization Theory Of Recurrent Neural ODEs Using Polynomial System
  Embeddings
Realization Theory Of Recurrent Neural ODEs Using Polynomial System Embeddings
Martin Gonzalez
Thibault Defourneau
H. Hajri
Mihaly Petreczky
31
2
0
24 May 2022
Photorealistic Text-to-Image Diffusion Models with Deep Language
  Understanding
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
Chitwan Saharia
William Chan
Saurabh Saxena
Lala Li
Jay Whang
...
Raphael Gontijo-Lopes
Tim Salimans
Jonathan Ho
David J Fleet
Mohammad Norouzi
VLM
113
5,817
0
23 May 2022
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for
  Population Dynamics
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for Population Dynamics
Takeshi Koshizuka
Issei Sato
42
6
0
11 Apr 2022
Video Diffusion Models
Video Diffusion Models
Jonathan Ho
Tim Salimans
Alexey A. Gritsenko
William Chan
Mohammad Norouzi
David J. Fleet
DiffM
VGen
90
1,526
0
07 Apr 2022
An end-to-end deep learning approach for extracting stochastic dynamical
  systems with $α$-stable Lévy noise
An end-to-end deep learning approach for extracting stochastic dynamical systems with ααα-stable Lévy noise
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
59
16
0
31 Jan 2022
Heavy Ball Neural Ordinary Differential Equations
Heavy Ball Neural Ordinary Differential Equations
Hedi Xia
Vai Suliafu
H. Ji
T. Nguyen
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
45
56
0
10 Oct 2021
Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas
Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas
Yubin Lu
Yang Li
Jinqiao Duan
21
16
0
28 Aug 2021
GRAND: Graph Neural Diffusion
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
54
254
0
21 Jun 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
30
16
0
21 Jun 2021
A Variational Perspective on Diffusion-Based Generative Models and Score
  Matching
A Variational Perspective on Diffusion-Based Generative Models and Score Matching
Chin-Wei Huang
Jae Hyun Lim
Aaron Courville
DiffM
41
188
0
05 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
31
61
0
27 May 2021
Deep limits and cut-off phenomena for neural networks
Deep limits and cut-off phenomena for neural networks
B. Avelin
A. Karlsson
AI4CE
43
2
0
21 Apr 2021
Meta-Solver for Neural Ordinary Differential Equations
Meta-Solver for Neural Ordinary Differential Equations
Julia Gusak
A. Katrutsa
Talgat Daulbaev
A. Cichocki
Ivan Oseledets
16
2
0
15 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
12
Next