Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.04982
Cited By
Learning Hierarchical Priors in VAEs
13 May 2019
Alexej Klushyn
Nutan Chen
Richard Kurle
Botond Cseke
Patrick van der Smagt
BDL
CML
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Hierarchical Priors in VAEs"
19 / 19 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
96
1
0
25 Nov 2024
M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling
Xudong Sun
Nutan Chen
Alexej Gossmann
Yu Xing
Carla Feistner
...
Felix Drost
Daniele Scarcella
Lisa Beer
Carsten Marr
Carsten Marr
59
1
0
20 Mar 2024
Variational Mixture of HyperGenerators for Learning Distributions Over Functions
Batuhan Koyuncu
Pablo Sánchez-Martín
I. Peis
Pablo Martínez Olmos
Isabel Valera
BDL
GAN
DRL
27
5
0
13 Feb 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
40
10
0
01 Jan 2023
NVDiff: Graph Generation through the Diffusion of Node Vectors
Xiaohui Chen
Yukun Li
Aonan Zhang
Liping Liu
DiffM
28
21
0
19 Nov 2022
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
42
21
0
15 Sep 2022
Fuse It More Deeply! A Variational Transformer with Layer-Wise Latent Variable Inference for Text Generation
Jinyi Hu
Xiaoyuan Yi
Wenhao Li
Maosong Sun
Xing Xie
46
21
0
13 Jul 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
39
29
0
16 Jun 2022
Efficient-VDVAE: Less is more
Louay Hazami
Rayhane Mama
Ragavan Thurairatnam
BDL
29
28
0
25 Mar 2022
VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming
Eleonora Misino
G. Marra
Emanuele Sansone
29
21
0
07 Feb 2022
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
24
8
0
10 Nov 2021
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
32
10
0
25 Jun 2021
Symmetric Wasserstein Autoencoders
S. Sun
Hong Guo
DiffM
GAN
26
0
0
24 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
48
63
0
30 Apr 2021
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
29
15
0
18 Jan 2021
AVAE: Adversarial Variational Auto Encoder
Antoine Plumerault
Hervé Le Borgne
C´eline Hudelot
GAN
DRL
29
16
0
21 Dec 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
37
39
0
12 Feb 2020
1