Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.04817
Cited By
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
13 May 2019
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks"
46 / 46 papers shown
Title
Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning
Alex Finkelstein
Nikita Vladimirov
Moritz Zaiss
O. Perlman
35
2
0
10 Nov 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression
S. Z. Ashtiani
Mohammad Sarabian
K. Laksari
H. Babaee
34
2
0
14 Mar 2024
Physics-informed neural networks for blood flow inverse problems
Jeremías Garay
J. Dunstan
S. Uribe
F. Sahli Costabal
PINN
36
3
0
02 Aug 2023
Physics-Informed Computer Vision: A Review and Perspectives
C. Banerjee
Kien Nguyen
Clinton Fookes
G. Karniadakis
PINN
AI4CE
39
30
0
29 May 2023
Physics-informed machine learning for moving load problems
Taniya Kapoor
Hongrui Wang
Alfredo Núñez
R. Dollevoet
AI4CE
PINN
6
9
0
01 Apr 2023
Viscoelastic Constitutive Artificial Neural Networks (vCANNs)
−
-
−
a framework for data-driven anisotropic nonlinear finite viscoelasticity
Kian P. Abdolazizi
K. Linka
C. Cyron
27
32
0
21 Mar 2023
Learning Reduced-Order Models for Cardiovascular Simulations with Graph Neural Networks
Luca Pegolotti
Martin R. Pfaller
Natalia L. Rubio
Ke Ding
Rita Brugarolas Brufau
Eric F. Darve
Alison L. Marsden
AI4CE
53
31
0
13 Mar 2023
Temporal Consistency Loss for Physics-Informed Neural Networks
Sukirt Thakur
M. Raissi
H. Mitra
A. Ardekani
PINN
33
10
0
30 Jan 2023
Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification
A. Alberts
Ilias Bilionis
39
12
0
18 Jan 2023
Machine Learning for Smart and Energy-Efficient Buildings
Hari Prasanna Das
Yu-Wen Lin
Utkarsha Agwan
Lucas Spangher
Alex Devonport
Yu Yang
Ján Drgoňa
A. Chong
S. Schiavon
C. Spanos
HAI
AI4CE
34
20
0
27 Nov 2022
Utilising physics-guided deep learning to overcome data scarcity
Jinshuai Bai
Laith Alzubaidi
Qingxia Wang
E. Kuhl
Bennamoun
Yuantong T. Gu
PINN
AI4CE
52
3
0
24 Nov 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
37
49
0
14 Nov 2022
Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)
S. Basir
PINN
AI4CE
31
21
0
20 Sep 2022
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
35
10
0
30 Jun 2022
Momentum Diminishes the Effect of Spectral Bias in Physics-Informed Neural Networks
G. Farhani
Alexander Kazachek
Boyu Wang
27
6
0
29 Jun 2022
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
53
199
0
14 Mar 2022
Energy networks for state estimation with random sensors using sparse labels
Y. Kumar
S. Chakraborty
29
0
0
12 Mar 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
25
158
0
12 Feb 2022
Physics-informed neural networks for solving parametric magnetostatic problems
Andrés Beltrán-Pulido
Ilias Bilionis
D. Aliprantis
30
34
0
08 Feb 2022
Physics-informed neural networks for modeling rate- and temperature-dependent plasticity
Rajat Arora
P. Kakkar
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
49
19
0
20 Jan 2022
Temperature Field Inversion of Heat-Source Systems via Physics-Informed Neural Networks
Xu Liu
Wei Peng
Zhiqiang Gong
Weien Zhou
W. Yao
32
54
0
18 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
31
1,190
0
14 Jan 2022
Machine-Learning Identification of Hemodynamics in Coronary Arteries in the Presence of Stenosis
M. Farajtabar
M. Biglarian
Morteza Miansari
16
3
0
02 Nov 2021
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
36
68
0
30 Sep 2021
Simulating progressive intramural damage leading to aortic dissection using an operator-regression neural network
Minglang Yin
Ehsan Ban
B. Rego
Enrui Zhang
C. Cavinato
J. Humphrey
George Karniadakis
AI4CE
34
52
0
25 Aug 2021
Physics-constrained Deep Learning for Robust Inverse ECG Modeling
Jianxin Xie
B. Yao
30
22
0
26 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffM
AI4CE
48
193
0
26 Jun 2021
Long-time integration of parametric evolution equations with physics-informed DeepONets
Sizhuang He
P. Perdikaris
AI4CE
24
117
0
09 Jun 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
225
0
26 Apr 2021
Physics-informed neural networks for the shallow-water equations on the sphere
Alexander Bihlo
R. Popovych
14
77
0
01 Apr 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
45
671
0
19 Mar 2021
Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data
Mohamed Aziz Bhouri
P. Perdikaris
31
20
0
04 Mar 2021
Can Transfer Neuroevolution Tractably Solve Your Differential Equations?
Jian Cheng Wong
Abhishek Gupta
Yew-Soon Ong
28
21
0
06 Jan 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
35
146
0
22 Dec 2020
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
135
442
0
18 Dec 2020
Physics-informed neural networks for myocardial perfusion MRI quantification
R. L. M. V. Herten
A. Chiribiri
M. Breeuwer
M. Veta
C. Scannell
22
43
0
25 Nov 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
881
0
28 Jul 2020
NPLIC: A Machine Learning Approach to Piecewise Linear Interface Construction
M. Ataei
M. Bussmann
V. Shaayegan
F. Costa
Sejin Han
Chul B. Park
AI4CE
13
18
0
26 Jun 2020
Interface learning of multiphysics and multiscale systems
Shady E. Ahmed
Omer San
Kursat Kara
R. Younis
Adil Rasheed
PINN
AI4CE
8
6
0
17 Jun 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
27
222
0
10 Jun 2020
Deep learning of free boundary and Stefan problems
Sizhuang He
P. Perdikaris
27
80
0
04 Jun 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
59
123
0
17 May 2020
Physics-informed deep learning for incompressible laminar flows
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
17
223
0
24 Feb 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
42
290
0
13 Jan 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,695
0
05 Dec 2016
1