ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10112
6
6

Interface learning of multiphysics and multiscale systems

17 June 2020
Shady E. Ahmed
Omer San
Kursat Kara
R. Younis
Adil Rasheed
    PINN
    AI4CE
ArXivPDFHTML
Abstract

Complex natural or engineered systems comprise multiple characteristic scales, multiple spatiotemporal domains, and even multiple physical closure laws. To address such challenges, we introduce an interface learning paradigm and put forth a data-driven closure approach based on memory embedding to provide physically correct boundary conditions at the interface. To enable the interface learning for hyperbolic systems by considering the domain of influence and wave structures into account, we put forth the concept of upwind learning towards a physics-informed domain decomposition. The promise of the proposed approach is shown for a set of canonical illustrative problems. We highlight that high-performance computing environments can benefit from this methodology to reduce communication costs among processing units in emerging machine learning ready heterogeneous platforms toward exascale era.

View on arXiv
Comments on this paper