Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.00877
Cited By
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle
2 May 2019
Dinghuai Zhang
Tianyuan Zhang
Yiping Lu
Zhanxing Zhu
Bin Dong
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle"
50 / 106 papers shown
Title
DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks
Shiwen Ni
Jiawen Li
Hung-Yu kao
AAML
19
4
0
29 Aug 2021
ASAT: Adaptively Scaled Adversarial Training in Time Series
Zhiyuan Zhang
Wei Li
Ruihan Bao
Keiko Harimoto
Yunfang Wu
Xu Sun
AI4TS
27
5
0
20 Aug 2021
A Survey on Data Augmentation for Text Classification
Markus Bayer
M. Kaufhold
Christian A. Reuter
38
336
0
07 Jul 2021
Certification of embedded systems based on Machine Learning: A survey
Guillaume Vidot
Christophe Gabreau
I. Ober
Iulian Ober
11
12
0
14 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
21
31
0
09 Jun 2021
Concurrent Adversarial Learning for Large-Batch Training
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
33
13
0
01 Jun 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
23
9
0
31 May 2021
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
60
0
21 May 2021
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
FedML
33
44
0
19 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
36
65
0
09 Apr 2021
Universal Adversarial Training with Class-Wise Perturbations
Philipp Benz
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
22
26
0
07 Apr 2021
Adversarial Robustness under Long-Tailed Distribution
Tong Wu
Ziwei Liu
Qingqiu Huang
Yu Wang
Dahua Lin
21
76
0
06 Apr 2021
Learning Defense Transformers for Counterattacking Adversarial Examples
Jincheng Li
Jingyun Liang
Yifan Zhang
Jian Chen
Mingkui Tan
AAML
37
2
0
13 Mar 2021
Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack
Mengting Xu
Tao Zhang
Zhongnian Li
Mingxia Liu
Daoqiang Zhang
AAML
OOD
MedIm
33
41
0
05 Mar 2021
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
28
1
0
04 Mar 2021
A Survey On Universal Adversarial Attack
Chaoning Zhang
Philipp Benz
Chenguo Lin
Adil Karjauv
Jing Wu
In So Kweon
AAML
23
90
0
02 Mar 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
21
47
0
20 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead
Maurizio Capra
Beatrice Bussolino
Alberto Marchisio
Guido Masera
Maurizio Martina
Muhammad Shafique
BDL
59
140
0
21 Dec 2020
ROBY: Evaluating the Robustness of a Deep Model by its Decision Boundaries
Jinyin Chen
Zhen Wang
Haibin Zheng
Jun Xiao
Zhaoyan Ming
AAML
19
5
0
18 Dec 2020
Improving Adversarial Robustness via Probabilistically Compact Loss with Logit Constraints
X. Li
Xiangrui Li
Deng Pan
D. Zhu
AAML
21
17
0
14 Dec 2020
Learnable Boundary Guided Adversarial Training
Jiequan Cui
Shu Liu
Liwei Wang
Jiaya Jia
OOD
AAML
30
124
0
23 Nov 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
49
8
0
03 Nov 2020
Robustness May Be at Odds with Fairness: An Empirical Study on Class-wise Accuracy
Philipp Benz
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
24
57
0
26 Oct 2020
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong
Haoming Jiang
Yuchen Zhuang
Jie Lyu
T. Zhao
Chao Zhang
OODD
27
26
0
22 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
680
0
19 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
21
22
0
15 Oct 2020
A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation
Dinghan Shen
Ming Zheng
Yelong Shen
Yanru Qu
Weizhu Chen
AAML
29
130
0
29 Sep 2020
Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases
Ren Wang
Gaoyuan Zhang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
Meng Wang
AAML
33
148
0
31 Jul 2020
A Differential Game Theoretic Neural Optimizer for Training Residual Networks
Guan-Horng Liu
T. Chen
Evangelos A. Theodorou
24
2
0
17 Jul 2020
Odyssey: Creation, Analysis and Detection of Trojan Models
Marzieh Edraki
Nazmul Karim
Nazanin Rahnavard
Ajmal Mian
M. Shah
AAML
28
13
0
16 Jul 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Large-Scale Adversarial Training for Vision-and-Language Representation Learning
Zhe Gan
Yen-Chun Chen
Linjie Li
Chen Zhu
Yu Cheng
Jingjing Liu
ObjD
VLM
35
488
0
11 Jun 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
26
9
0
08 Jun 2020
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses
Yaxin Li
Wei Jin
Han Xu
Jiliang Tang
AAML
32
131
0
13 May 2020
Robust Deep Learning as Optimal Control: Insights and Convergence Guarantees
Jacob H. Seidman
Mahyar Fazlyab
V. Preciado
George J. Pappas
AAML
16
15
0
01 May 2020
Diversity can be Transferred: Output Diversification for White- and Black-box Attacks
Y. Tashiro
Yang Song
Stefano Ermon
AAML
14
13
0
15 Mar 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
39
78
0
11 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
787
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
33
397
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
37
69
0
25 Feb 2020
Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework
Dinghuai Zhang
Mao Ye
Chengyue Gong
Zhanxing Zhu
Qiang Liu
AAML
24
62
0
21 Feb 2020
CAT: Customized Adversarial Training for Improved Robustness
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OOD
AAML
27
114
0
17 Feb 2020
Semantic Robustness of Models of Source Code
Goutham Ramakrishnan
Jordan Henkel
Zi Wang
Aws Albarghouthi
S. Jha
Thomas W. Reps
SILM
AAML
47
97
0
07 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
99
1,159
0
12 Jan 2020
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius
Runtian Zhai
Chen Dan
Di He
Huan Zhang
Boqing Gong
Pradeep Ravikumar
Cho-Jui Hsieh
Liwei Wang
OOD
AAML
16
177
0
08 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Deep Learning via Dynamical Systems: An Approximation Perspective
Qianxiao Li
Ting Lin
Zuowei Shen
AI4TS
AI4CE
25
107
0
22 Dec 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
35
122
0
23 Jun 2019
Intriguing properties of adversarial training at scale
Cihang Xie
Alan Yuille
AAML
13
68
0
10 Jun 2019
Previous
1
2
3
Next