ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.00877
  4. Cited By
You Only Propagate Once: Accelerating Adversarial Training via Maximal
  Principle

You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle

2 May 2019
Dinghuai Zhang
Tianyuan Zhang
Yiping Lu
Zhanxing Zhu
Bin Dong
    AAML
ArXivPDFHTML

Papers citing "You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle"

50 / 105 papers shown
Title
Data Selection via Optimal Control for Language Models
Data Selection via Optimal Control for Language Models
Yuxian Gu
Li Dong
Hongning Wang
Y. Hao
Qingxiu Dong
Furu Wei
Minlie Huang
AI4CE
58
5
0
09 Oct 2024
Exploiting the Layered Intrinsic Dimensionality of Deep Models for
  Practical Adversarial Training
Exploiting the Layered Intrinsic Dimensionality of Deep Models for Practical Adversarial Training
Enes Altinisik
Safa Messaoud
Husrev Taha Sencar
Hassan Sajjad
Sanjay Chawla
AAML
48
0
0
27 May 2024
QLSC: A Query Latent Semantic Calibrator for Robust Extractive Question
  Answering
QLSC: A Query Latent Semantic Calibrator for Robust Extractive Question Answering
Ouyang Sheng
Jianzong Wang
Yong Zhang
Zhitao Li
Ziqi Liang
Xulong Zhang
Ning Cheng
Jing Xiao
24
0
0
30 Apr 2024
Perturbing Attention Gives You More Bang for the Buck: Subtle Imaging
  Perturbations That Efficiently Fool Customized Diffusion Models
Perturbing Attention Gives You More Bang for the Buck: Subtle Imaging Perturbations That Efficiently Fool Customized Diffusion Models
Jingyao Xu
Yuetong Lu
Yandong Li
Siyang Lu
Dongdong Wang
Xiang Wei
AAML
DiffM
27
10
0
23 Apr 2024
LAMPAT: Low-Rank Adaption for Multilingual Paraphrasing Using
  Adversarial Training
LAMPAT: Low-Rank Adaption for Multilingual Paraphrasing Using Adversarial Training
Khoi M. Le
Trinh Pham
Tho Quan
A. Luu
27
7
0
09 Jan 2024
SCAAT: Improving Neural Network Interpretability via Saliency
  Constrained Adaptive Adversarial Training
SCAAT: Improving Neural Network Interpretability via Saliency Constrained Adaptive Adversarial Training
Rui Xu
Wenkang Qin
Peixiang Huang
Hao Wang
Lin Luo
FAtt
AAML
33
2
0
09 Nov 2023
Robust Mixture-of-Expert Training for Convolutional Neural Networks
Robust Mixture-of-Expert Training for Convolutional Neural Networks
Yihua Zhang
Ruisi Cai
Tianlong Chen
Guanhua Zhang
Huan Zhang
Pin-Yu Chen
Shiyu Chang
Zhangyang Wang
Sijia Liu
MoE
AAML
OOD
36
16
0
19 Aug 2023
A Theoretical Perspective on Subnetwork Contributions to Adversarial
  Robustness
A Theoretical Perspective on Subnetwork Contributions to Adversarial Robustness
Jovon Craig
Joshua Andle
Theodore S. Nowak
Salimeh Yasaei Sekeh
AAML
47
0
0
07 Jul 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks &
  Defenses
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
52
50
0
18 May 2023
Beyond Empirical Risk Minimization: Local Structure Preserving
  Regularization for Improving Adversarial Robustness
Beyond Empirical Risk Minimization: Local Structure Preserving Regularization for Improving Adversarial Robustness
Wei Wei
Jiahuan Zhou
Yingying Wu
AAML
15
0
0
29 Mar 2023
Better Diffusion Models Further Improve Adversarial Training
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min Lin
Weiwei Liu
Shuicheng Yan
DiffM
26
208
0
09 Feb 2023
On adversarial robustness and the use of Wasserstein ascent-descent
  dynamics to enforce it
On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it
Camilo A. Garcia Trillos
Nicolas García Trillos
26
5
0
09 Jan 2023
Explainability and Robustness of Deep Visual Classification Models
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
47
2
0
03 Jan 2023
Guidance Through Surrogate: Towards a Generic Diagnostic Attack
Guidance Through Surrogate: Towards a Generic Diagnostic Attack
Muzammal Naseer
Salman Khan
Fatih Porikli
Fahad Shahbaz Khan
AAML
28
1
0
30 Dec 2022
The Underlying Correlated Dynamics in Neural Training
The Underlying Correlated Dynamics in Neural Training
Rotem Turjeman
Tom Berkov
I. Cohen
Guy Gilboa
27
3
0
18 Dec 2022
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
29
5
0
15 Dec 2022
Adaptive adversarial training method for improving multi-scale GAN based
  on generalization bound theory
Adaptive adversarial training method for improving multi-scale GAN based on generalization bound theory
Jin-Lin Tang
B. Tao
Zeyu Gong
Zhoupin Yin
AI4CE
34
1
0
30 Nov 2022
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Xiaoyue Duan
Guoliang Kang
Runqi Wang
Shumin Han
Shenjun Xue
Tian Wang
Baochang Zhang
29
2
0
28 Nov 2022
Generative Adversarial Training Can Improve Neural Language Models
Generative Adversarial Training Can Improve Neural Language Models
Sajad Movahedi
A. Shakery
GAN
AI4CE
34
2
0
02 Nov 2022
Visual Prompting for Adversarial Robustness
Visual Prompting for Adversarial Robustness
Aochuan Chen
P. Lorenz
Yuguang Yao
Pin-Yu Chen
Sijia Liu
VLM
VPVLM
40
32
0
12 Oct 2022
Robust Models are less Over-Confident
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
36
24
0
12 Oct 2022
Saliency Guided Adversarial Training for Learning Generalizable Features
  with Applications to Medical Imaging Classification System
Saliency Guided Adversarial Training for Learning Generalizable Features with Applications to Medical Imaging Classification System
Xin Li
Yao Qiang
Chengyin Li
Sijia Liu
D. Zhu
OOD
MedIm
34
4
0
09 Sep 2022
Adversarial Vulnerability of Temporal Feature Networks for Object
  Detection
Adversarial Vulnerability of Temporal Feature Networks for Object Detection
Svetlana Pavlitskaya
Nikolai Polley
Michael Weber
J. Marius Zöllner
AAML
14
2
0
23 Aug 2022
Adversarial Contrastive Learning via Asymmetric InfoNCE
Adversarial Contrastive Learning via Asymmetric InfoNCE
Qiying Yu
Jieming Lou
Xianyuan Zhan
Qizhang Li
W. Zuo
Yang Liu
Jingjing Liu
AAML
36
23
0
18 Jul 2022
Masked Spatial-Spectral Autoencoders Are Excellent Hyperspectral
  Defenders
Masked Spatial-Spectral Autoencoders Are Excellent Hyperspectral Defenders
Jiahao Qi
Z. Gong
Xingyue Liu
Kangcheng Bin
Chen Chen
Yongqiang Li
Wei Xue
Yu Zhang
P. Zhong
AAML
42
6
0
16 Jul 2022
RUSH: Robust Contrastive Learning via Randomized Smoothing
Yijiang Pang
Boyang Liu
Jiayu Zhou
OOD
AAML
19
1
0
11 Jul 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at
  Scale
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
30
12
0
13 Jun 2022
Building Robust Ensembles via Margin Boosting
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
48
15
0
07 Jun 2022
Defending a Music Recommender Against Hubness-Based Adversarial Attacks
Defending a Music Recommender Against Hubness-Based Adversarial Attacks
Katharina Hoedt
A. Flexer
Gerhard Widmer
AAML
22
3
0
24 May 2022
CE-based white-box adversarial attacks will not work using super-fitting
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
37
0
0
04 May 2022
Adversarial Robustness through the Lens of Convolutional Filters
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
38
15
0
05 Apr 2022
CNN Filter DB: An Empirical Investigation of Trained Convolutional
  Filters
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Paul Gavrikov
J. Keuper
AAML
24
31
0
29 Mar 2022
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization
  Perspective
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Yimeng Zhang
Yuguang Yao
Jinghan Jia
Jinfeng Yi
Min-Fong Hong
Shiyu Chang
Sijia Liu
AAML
26
33
0
27 Mar 2022
Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for
  Pre-trained Language Models
Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models
Ning Ding
Yujia Qin
Guang Yang
Fu Wei
Zonghan Yang
...
Jianfei Chen
Yang Liu
Jie Tang
Juan Li
Maosong Sun
32
196
0
14 Mar 2022
Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack
Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack
Ye Liu
Yaya Cheng
Lianli Gao
Xianglong Liu
Qilong Zhang
Jingkuan Song
AAML
40
57
0
10 Mar 2022
Semi-Implicit Hybrid Gradient Methods with Application to Adversarial
  Robustness
Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness
Beomsu Kim
Junghoon Seo
AAML
22
0
0
21 Feb 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
32
4
0
03 Feb 2022
On the Impact of Hard Adversarial Instances on Overfitting in
  Adversarial Training
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
23
13
0
14 Dec 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated
  Channel Maps
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
43
17
0
09 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
27
26
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based
  Adversarial Attacks
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
AugMax: Adversarial Composition of Random Augmentations for Robust
  Training
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
27
106
0
26 Oct 2021
TESDA: Transform Enabled Statistical Detection of Attacks in Deep Neural
  Networks
TESDA: Transform Enabled Statistical Detection of Attacks in Deep Neural Networks
C. Amarnath
Aishwarya H. Balwani
Kwondo Ma
Abhijit Chatterjee
AAML
18
3
0
16 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep
  Spiking Neural Networks by Training with Crafted Input Noise
HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise
Souvik Kundu
Massoud Pedram
P. Beerel
AAML
22
71
0
06 Oct 2021
BulletTrain: Accelerating Robust Neural Network Training via Boundary
  Example Mining
BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
Weizhe Hua
Yichi Zhang
Chuan Guo
Zhiru Zhang
G. E. Suh
OOD
39
15
0
29 Sep 2021
Improving Gradient-based Adversarial Training for Text Classification by
  Contrastive Learning and Auto-Encoder
Improving Gradient-based Adversarial Training for Text Classification by Contrastive Learning and Auto-Encoder
Yao Qiu
Jinchao Zhang
Jie Zhou
AAML
SILM
32
16
0
14 Sep 2021
On the regularized risk of distributionally robust learning over deep
  neural networks
On the regularized risk of distributionally robust learning over deep neural networks
Camilo A. Garcia Trillos
Nicolas García Trillos
OOD
45
10
0
13 Sep 2021
TREATED:Towards Universal Defense against Textual Adversarial Attacks
TREATED:Towards Universal Defense against Textual Adversarial Attacks
Bin Zhu
Zhaoquan Gu
Le Wang
Zhihong Tian
AAML
36
8
0
13 Sep 2021
Adversarial Parameter Defense by Multi-Step Risk Minimization
Adversarial Parameter Defense by Multi-Step Risk Minimization
Zhiyuan Zhang
Ruixuan Luo
Xuancheng Ren
Qi Su
Liangyou Li
Xu Sun
AAML
25
6
0
07 Sep 2021
123
Next