Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.12072
Cited By
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
26 April 2019
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Flow-based generative models for Markov chain Monte Carlo in lattice field theory"
36 / 36 papers shown
Title
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
50
0
0
16 Apr 2025
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
62
1
0
11 Mar 2025
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
78
0
0
17 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
60
3
0
10 Jan 2025
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
L. Wang
K. Zhou
26
4
0
28 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
47
9
0
03 Oct 2024
Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
Bálint Máté
François Fleuret
Tristan Bereau
DiffM
40
2
0
04 Jun 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
37
41
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
66
17
0
07 Feb 2024
Combining Normalizing Flows and Quasi-Monte Carlo
Charly Andral
BDL
29
1
0
11 Jan 2024
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
13
2
0
01 Jun 2023
Mutual information of spin systems from autoregressive neural networks
P. Białas
P. Korcyl
T. Stebel
19
3
0
26 Apr 2023
Neural Diffeomorphic Non-uniform B-spline Flows
S. Hong
S. Chun
32
1
0
07 Apr 2023
Fluctuation without dissipation: Microcanonical Langevin Monte Carlo
Jakob Robnik
U. Seljak
46
6
0
31 Mar 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
35
27
0
26 Jan 2023
fintech-kMC: Agent based simulations of financial platforms for design and testing of machine learning systems
Isaac Tamblyn
Tengkai Yu
Ian Benlolo
11
0
0
04 Jan 2023
Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions
Zhuo Chen
Di Luo
Kaiwen Hu
B. Clark
27
14
0
14 Dec 2022
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Yuma Ichikawa
Akira Nakagawa
Hiromoto Masayuki
Yuhei Umeda
BDL
18
0
0
25 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Blind Super-Resolution for Remote Sensing Images via Conditional Stochastic Normalizing Flows
Hanlin Wu
Ning Ni
Shan Wang
Li-bao Zhang
35
8
0
14 Oct 2022
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
32
9
0
13 Sep 2022
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
16
40
0
01 Jul 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
24
12
0
27 May 2022
Symmetry Group Equivariant Architectures for Physics
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
...
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
AI4CE
19
27
0
11 Mar 2022
A Group-Equivariant Autoencoder for Identifying Spontaneously Broken Symmetries
Devanshu Agrawal
A. Del Maestro
Steven Johnston
James Ostrowski
DRL
AI4CE
36
2
0
13 Feb 2022
Gradient estimators for normalising flows
P. Białas
P. Korcyl
T. Stebel
BDL
11
3
0
02 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
34
46
0
31 Jan 2022
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
22
34
0
21 Jan 2022
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
42
113
0
07 Dec 2021
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
P. Jaini
Didrik Nielsen
Max Welling
BDL
35
10
0
04 Feb 2021
Sampling using
S
U
(
N
)
SU(N)
S
U
(
N
)
gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
25
127
0
12 Aug 2020
Extending machine learning classification capabilities with histogram reweighting
Dimitrios Bachtis
Gert Aarts
B. Lucini
14
21
0
29 Apr 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
27
86
0
12 Feb 2020
A Probability Density Theory for Spin-Glass Systems
Gavin Hartnett
Masoud Mohseni
16
3
0
03 Jan 2020
1