Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.11487
Cited By
Blurring the Line Between Structure and Learning to Optimize and Adapt Receptive Fields
25 April 2019
Evan Shelhamer
Dequan Wang
Trevor Darrell
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Blurring the Line Between Structure and Learning to Optimize and Adapt Receptive Fields"
24 / 24 papers shown
Title
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
53
1
0
17 Sep 2024
Deep Continuous Networks
Nergis Tomen
S. Pintea
Jan van Gemert
94
14
0
02 Feb 2024
Dilated Convolution with Learnable Spacings: beyond bilinear interpolation
Ismail Khalfaoui-Hassani
Thomas Pellegrini
T. Masquelier
21
3
0
01 Jun 2023
GMConv: Modulating Effective Receptive Fields for Convolutional Kernels
Qi Chen
Chao Li
Jia Ning
Stephen Lin
Kun He
AAML
21
2
0
09 Feb 2023
Fully trainable Gaussian derivative convolutional layer
Valentin Penaud-Polge
Santiago Velasco-Forero
Jesús Angulo
21
9
0
18 Jul 2022
Efficient Representation Learning via Adaptive Context Pooling
Chen Huang
Walter A. Talbott
Navdeep Jaitly
J. Susskind
30
6
0
05 Jul 2022
BlobGAN: Spatially Disentangled Scene Representations
Dave Epstein
Taesung Park
Richard Y. Zhang
Eli Shechtman
Alexei A. Efros
GAN
SSL
OCL
37
42
0
05 May 2022
Dilated convolution with learnable spacings
Ismail Khalfaoui-Hassani
Thomas Pellegrini
T. Masquelier
25
31
0
07 Dec 2021
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
David W. Romero
Robert-Jan Bruintjes
Jakub M. Tomczak
Erik J. Bekkers
Mark Hoogendoorn
Jan van Gemert
80
82
0
15 Oct 2021
Resolution learning in deep convolutional networks using scale-space theory
Silvia L.Pintea
Nergis Tomen
Stanley F. Goes
Marco Loog
Jan van Gemert
SupR
SSL
30
37
0
07 Jun 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David Wagner
Trevor Darrell
AAML
26
26
0
18 May 2021
Spectral Leakage and Rethinking the Kernel Size in CNNs
Nergis Tomen
Jan van Gemert
AAML
24
18
0
25 Jan 2021
Spatially-Adaptive Pixelwise Networks for Fast Image Translation
Tamar Rott Shaham
Michael Gharbi
Richard Y. Zhang
Eli Shechtman
T. Michaeli
21
77
0
05 Dec 2020
Deep Hough-Transform Line Priors
Yancong Lin
S. Pintea
Jan van Gemert
31
74
0
18 Jul 2020
CoDeNet: Efficient Deployment of Input-Adaptive Object Detection on Embedded FPGAs
Zhen Dong
Dequan Wang
Qijing Huang
Yizhao Gao
Yaohui Cai
Tian Li
Bichen Wu
Kurt Keutzer
J. Wawrzynek
ObjD
31
1
0
12 Jun 2020
Top-Down Networks: A coarse-to-fine reimagination of CNNs
Ioannis Lelekas
Nergis Tomen
S. Pintea
Jan van Gemert
24
6
0
16 Apr 2020
Translation Insensitive CNNs
G. Sundaramoorthi
Timothy E. Wang
27
7
0
25 Nov 2019
NeurVPS: Neural Vanishing Point Scanning via Conic Convolution
Yichao Zhou
Haozhi Qi
Jingwei Huang
Yi Ma
3DPC
21
42
0
14 Oct 2019
Deformable Kernels: Adapting Effective Receptive Fields for Object Deformation
Hang Gao
Xizhou Zhu
Steve Lin
Jifeng Dai
21
64
0
07 Oct 2019
Dynamic Graph Message Passing Networks
Li Zhang
Dan Xu
Anurag Arnab
Philip Torr
GNN
21
138
0
19 Aug 2019
Dynamic Scale Inference by Entropy Minimization
Dequan Wang
Evan Shelhamer
Bruno A. Olshausen
Trevor Darrell
27
7
0
08 Aug 2019
Provably scale-covariant continuous hierarchical networks based on scale-normalized differential expressions coupled in cascade
T. Lindeberg
27
19
0
29 May 2019
Deep Scale-spaces: Equivariance Over Scale
Daniel E. Worrall
Max Welling
BDL
15
166
0
28 May 2019
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,327
0
05 Nov 2016
1