ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.02837
27
42

BlobGAN: Spatially Disentangled Scene Representations

5 May 2022
Dave Epstein
Taesung Park
Richard Y. Zhang
Eli Shechtman
Alexei A. Efros
    GAN
    SSL
    OCL
ArXivPDFHTML
Abstract

We propose an unsupervised, mid-level representation for a generative model of scenes. The representation is mid-level in that it is neither per-pixel nor per-image; rather, scenes are modeled as a collection of spatial, depth-ordered "blobs" of features. Blobs are differentiably placed onto a feature grid that is decoded into an image by a generative adversarial network. Due to the spatial uniformity of blobs and the locality inherent to convolution, our network learns to associate different blobs with different entities in a scene and to arrange these blobs to capture scene layout. We demonstrate this emergent behavior by showing that, despite training without any supervision, our method enables applications such as easy manipulation of objects within a scene (e.g., moving, removing, and restyling furniture), creation of feasible scenes given constraints (e.g., plausible rooms with drawers at a particular location), and parsing of real-world images into constituent parts. On a challenging multi-category dataset of indoor scenes, BlobGAN outperforms StyleGAN2 in image quality as measured by FID. See our project page for video results and interactive demo: https://www.dave.ml/blobgan

View on arXiv
Comments on this paper