ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.10754
  4. Cited By
OperatorNet: Recovering 3D Shapes From Difference Operators

OperatorNet: Recovering 3D Shapes From Difference Operators

24 April 2019
Ruqi Huang
Marie-Julie Rakotosaona
Panos Achlioptas
Leonidas J. Guibas
M. Ovsjanikov
ArXivPDFHTML

Papers citing "OperatorNet: Recovering 3D Shapes From Difference Operators"

5 / 5 papers shown
Title
A Simple Strategy to Provable Invariance via Orbit Mapping
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML
3DPC
18
3
0
24 Sep 2022
Flow-based Generative Models for Learning Manifold to Manifold Mappings
Flow-based Generative Models for Learning Manifold to Manifold Mappings
Xingjian Zhen
Rudrasis Chakraborty
Liu Yang
Vikas Singh
DRL
MedIm
31
9
0
18 Dec 2020
Instant recovery of shape from spectrum via latent space connections
Instant recovery of shape from spectrum via latent space connections
R. Marin
Arianna Rampini
U. Castellani
Emanuele Rodolà
M. Ovsjanikov
Simone Melzi
35
20
0
14 Mar 2020
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
132
325
0
13 Jun 2018
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
261
3,240
0
24 Nov 2016
1