Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.10754
Cited By
OperatorNet: Recovering 3D Shapes From Difference Operators
24 April 2019
Ruqi Huang
Marie-Julie Rakotosaona
Panos Achlioptas
Leonidas J. Guibas
M. Ovsjanikov
Re-assign community
ArXiv
PDF
HTML
Papers citing
"OperatorNet: Recovering 3D Shapes From Difference Operators"
5 / 5 papers shown
Title
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML
3DPC
18
3
0
24 Sep 2022
Flow-based Generative Models for Learning Manifold to Manifold Mappings
Xingjian Zhen
Rudrasis Chakraborty
Liu Yang
Vikas Singh
DRL
MedIm
31
9
0
18 Dec 2020
Instant recovery of shape from spectrum via latent space connections
R. Marin
Arianna Rampini
U. Castellani
Emanuele Rodolà
M. Ovsjanikov
Simone Melzi
35
20
0
14 Mar 2020
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
132
325
0
13 Jun 2018
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
261
3,240
0
24 Nov 2016
1