ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.09237
  4. Cited By
On the Convergence of Adam and Beyond

On the Convergence of Adam and Beyond

19 April 2019
Sashank J. Reddi
Satyen Kale
Surinder Kumar
ArXivPDFHTML

Papers citing "On the Convergence of Adam and Beyond"

33 / 33 papers shown
Title
Implicit Neural Shape Optimization for 3D High-Contrast Electrical Impedance Tomography
Implicit Neural Shape Optimization for 3D High-Contrast Electrical Impedance Tomography
Junqing Chen
Haibo Liu
142
0
0
22 May 2025
HOME-3: High-Order Momentum Estimator with Third-Power Gradient for Convex and Smooth Nonconvex Optimization
HOME-3: High-Order Momentum Estimator with Third-Power Gradient for Convex and Smooth Nonconvex Optimization
Wei Zhang
Arif Hassan Zidan
Afrar Jahin
Wei Zhang
Tianming Liu
ODL
42
0
0
16 May 2025
A Langevin sampling algorithm inspired by the Adam optimizer
A Langevin sampling algorithm inspired by the Adam optimizer
Benedict Leimkuhler
René Lohmann
Peter Whalley
104
0
0
26 Apr 2025
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Dmitry Kovalev
91
3
0
16 Mar 2025
Generative Adversarial Networks for High-Dimensional Item Factor Analysis: A Deep Adversarial Learning Algorithm
Nanyu Luo
Feng Ji
DRL
57
0
0
15 Feb 2025
Automatic Live Music Song Identification Using Multi-level Deep Sequence Similarity Learning
Automatic Live Music Song Identification Using Multi-level Deep Sequence Similarity Learning
Aapo Hakala
Trevor Kincy
Tuomas Virtanen
132
0
0
14 Jan 2025
On the Performance Analysis of Momentum Method: A Frequency Domain Perspective
On the Performance Analysis of Momentum Method: A Frequency Domain Perspective
Xianliang Li
Jun Luo
Zhiwei Zheng
Hanxiao Wang
Li Luo
Lingkun Wen
Linlong Wu
Sheng Xu
103
0
0
29 Nov 2024
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
46
0
0
11 Nov 2024
Inductive Gradient Adjustment For Spectral Bias In Implicit Neural Representations
Inductive Gradient Adjustment For Spectral Bias In Implicit Neural Representations
Kexuan Shi
Hai Chen
Leheng Zhang
Shuhang Gu
58
1
0
17 Oct 2024
Metamizer: a versatile neural optimizer for fast and accurate physics simulations
Metamizer: a versatile neural optimizer for fast and accurate physics simulations
Nils Wandel
Stefan Schulz
Reinhard Klein
PINN
AI4CE
64
1
0
10 Oct 2024
An Attention-Based Algorithm for Gravity Adaptation Zone Calibration
An Attention-Based Algorithm for Gravity Adaptation Zone Calibration
Chen Yu
36
0
0
06 Oct 2024
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
67
3
0
09 Jul 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
87
0
0
11 Jun 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
64
5
0
06 Jun 2024
AdaFisher: Adaptive Second Order Optimization via Fisher Information
AdaFisher: Adaptive Second Order Optimization via Fisher Information
Damien Martins Gomes
Yanlei Zhang
Eugene Belilovsky
Guy Wolf
Mahdi S. Hosseini
ODL
108
2
0
26 May 2024
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Jia Guo
Shuai Lu
Weihang Zhang
Huiqi Li
Huiqi Li
Hongen Liao
ViT
94
10
0
23 May 2024
Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Pingzhi Li
Junyu Liu
Hanrui Wang
Tianlong Chen
121
1
0
30 Apr 2024
Regularized Gradient Clipping Provably Trains Wide and Deep Neural Networks
Regularized Gradient Clipping Provably Trains Wide and Deep Neural Networks
Matteo Tucat
Anirbit Mukherjee
Procheta Sen
Mingfei Sun
Omar Rivasplata
MLT
51
1
0
12 Apr 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
59
0
0
09 Apr 2024
Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Jiawu Tian
Liwei Xu
Xiaowei Zhang
Yongqi Li
ODL
69
0
0
02 Apr 2024
Controlled Training Data Generation with Diffusion Models
Controlled Training Data Generation with Diffusion Models
Teresa Yeo
Andrei Atanov
Harold Benoit
Aleksandr Alekseev
Ruchira Ray
Pooya Esmaeil Akhoondi
Amir Zamir
57
6
0
22 Mar 2024
M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling
M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling
Xudong Sun
Nutan Chen
Alexej Gossmann
Yu Xing
Carla Feistner
...
Felix Drost
Daniele Scarcella
Lisa Beer
Carsten Marr
Carsten Marr
64
1
0
20 Mar 2024
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Sayantan Choudhury
N. Tupitsa
Nicolas Loizou
Samuel Horváth
Martin Takáč
Eduard A. Gorbunov
51
1
0
05 Mar 2024
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
Yusu Hong
Junhong Lin
76
13
0
06 Feb 2024
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Sobihan Surendran
Antoine Godichon-Baggioni
Adeline Fermanian
Sylvain Le Corff
73
1
0
05 Feb 2024
Efficient Computation of Sparse and Robust Maximum Association Estimators
Efficient Computation of Sparse and Robust Maximum Association Estimators
Pia Pfeiffer
Andreas Alfons
P. Filzmoser
29
0
0
29 Nov 2023
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
91
2
0
07 Jul 2021
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
61
216
0
08 Aug 2020
Deep Learning at the Edge
Deep Learning at the Edge
Sahar Voghoei
N. Tonekaboni
Jason G. Wallace
H. Arabnia
76
41
0
22 Oct 2019
Torchreid: A Library for Deep Learning Person Re-Identification in
  Pytorch
Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch
Kaiyang Zhou
Tao Xiang
69
118
0
22 Oct 2019
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
678
149,474
0
22 Dec 2014
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
106
6,619
0
22 Dec 2012
Adaptive Bound Optimization for Online Convex Optimization
Adaptive Bound Optimization for Online Convex Optimization
H. B. McMahan
Matthew J. Streeter
ODL
75
386
0
26 Feb 2010
1