ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.04676
  4. Cited By
Block Neural Autoregressive Flow

Block Neural Autoregressive Flow

9 April 2019
Nicola De Cao
Ivan Titov
Wilker Aziz
    DRL
ArXiv (abs)PDFHTML

Papers citing "Block Neural Autoregressive Flow"

24 / 24 papers shown
Title
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Ben Liu
Zhen Qin
85
0
0
19 May 2025
Local Flow Matching Generative Models
Local Flow Matching Generative Models
Chen Xu
Xiuyuan Cheng
Yao Xie
127
2
0
03 Jan 2025
Privacy Vulnerabilities in Marginals-based Synthetic Data
Privacy Vulnerabilities in Marginals-based Synthetic Data
Steven Golob
Sikha Pentyala
Anuar Maratkhan
Martine De Cock
79
5
0
07 Oct 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
102
2
0
29 Jul 2024
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
550
10,591
0
17 Feb 2020
Emerging Convolutions for Generative Normalizing Flows
Emerging Convolutions for Generative Normalizing Flows
Emiel Hoogeboom
Rianne van den Berg
Max Welling
DRL
121
98
0
30 Jan 2019
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCVTPM
161
624
0
02 Nov 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
160
881
0
02 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
308
3,144
0
09 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
457
5,176
0
19 Jun 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRLAI4CE
154
446
0
03 Apr 2018
Sylvester Normalizing Flows for Variational Inference
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDLDRL
92
253
0
15 Mar 2018
Transformation Autoregressive Networks
Transformation Autoregressive Networks
Junier B. Oliva
Kumar Avinava Dubey
Manzil Zaheer
Barnabás Póczós
Ruslan Salakhutdinov
Eric Xing
J. Schneider
OOD
91
86
0
30 Jan 2018
Bayesian Hypernetworks
Bayesian Hypernetworks
David M. Krueger
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
Aaron Courville
UQCVBDL
82
139
0
13 Oct 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
224
1,360
0
19 May 2017
HyperNetworks
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
172
1,633
0
27 Sep 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
155
1,825
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training
  of Deep Neural Networks
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
196
1,946
0
25 Feb 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
322
4,198
0
21 May 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OODSyDaUQCV
189
874
0
12 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
142
2,269
0
30 Oct 2014
High-Dimensional Probability Estimation with Deep Density Models
High-Dimensional Probability Estimation with Deep Density Models
Oren Rippel
Ryan P. Adams
184
124
0
20 Feb 2013
1