Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.01685
Cited By
Measuring Calibration in Deep Learning
2 April 2019
Jeremy Nixon
Michael W. Dusenberry
Ghassen Jerfel
Timothy Nguyen
Jeremiah Zhe Liu
Linchuan Zhang
Dustin Tran
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Measuring Calibration in Deep Learning"
50 / 310 papers shown
Title
Calibrate: Interactive Analysis of Probabilistic Model Output
Peter Xenopoulos
Joao Rulff
L. G. Nonato
Brian Barr
Claudio Silva
19
13
0
27 Jul 2022
MedML: Fusing Medical Knowledge and Machine Learning Models for Early Pediatric COVID-19 Hospitalization and Severity Prediction
Junyi Gao
Chaoqi Yang
George Heintz
Scott Barrows
E.A. Albers
Mary Stapel
Sara C Warfield
Adam Cross
Jimeng Sun
The N3C Consortium
15
27
0
25 Jul 2022
Aries: Efficient Testing of Deep Neural Networks via Labeling-Free Accuracy Estimation
Qiang Hu
Yuejun Guo
Xiaofei Xie
Maxime Cordy
Lei Ma
Mike Papadakis
Yves Le Traon
AAML
20
18
0
22 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
64
71
0
19 Jul 2022
Angular Gap: Reducing the Uncertainty of Image Difficulty through Model Calibration
Bohua Peng
Mobarakol Islam
Mei Tu
UQCV
21
9
0
18 Jul 2022
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
39
124
0
15 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
32
31
0
13 Jul 2022
Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
8
15
0
01 Jul 2022
Uncertainty-aware Panoptic Segmentation
Kshitij Sirohi
Sajad Marvi
Daniel Buscher
Wolfram Burgard
EDL
UQCV
33
26
0
29 Jun 2022
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
22
5
0
24 Jun 2022
Which models are innately best at uncertainty estimation?
Ido Galil
Mohammed Dabbah
Ran El-Yaniv
UQCV
34
5
0
05 Jun 2022
Excess risk analysis for epistemic uncertainty with application to variational inference
Futoshi Futami
Tomoharu Iwata
N. Ueda
Issei Sato
Masashi Sugiyama
UQCV
31
1
0
02 Jun 2022
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation
Mehmet Özgür Türkoglu
Alexander Becker
H. Gündüz
Mina Rezaei
Bernd Bischl
Rodrigo Caye Daudt
Stefano Dáronco
Jan Dirk Wegner
Konrad Schindler
FedML
UQCV
45
25
0
31 May 2022
Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty Improve Model Performance?
Christoph Koller
Goran Kauermann
Xiao Xiang Zhu
UQCV
24
6
0
30 May 2022
Teaching Models to Express Their Uncertainty in Words
Stephanie C. Lin
Jacob Hilton
Owain Evans
OOD
35
368
0
28 May 2022
Re-Examining Calibration: The Case of Question Answering
Chenglei Si
Chen Zhao
Sewon Min
Jordan L. Boyd-Graber
67
30
0
25 May 2022
What is Your Metric Telling You? Evaluating Classifier Calibration under Context-Specific Definitions of Reliability
John Kirchenbauer
Jacob Oaks
Eric Heim
UQCV
38
4
0
23 May 2022
Robust Flow-based Conformal Inference (FCI) with Statistical Guarantee
Youhui Ye
Meimei Liu
Xin Xing
23
0
0
22 May 2022
Metrics of calibration for probabilistic predictions
Imanol Arrieta-Ibarra
Paman Gujral
Jonathan Tannen
M. Tygert
Cherie Xu
55
20
0
19 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
Is my Driver Observation Model Overconfident? Input-guided Calibration Networks for Reliable and Interpretable Confidence Estimates
Alina Roitberg
Kunyu Peng
David Schneider
Kailun Yang
Marios Koulakis
Manuel Martínez
Rainer Stiefelhagen
UQCV
30
9
0
10 Apr 2022
DBCal: Density Based Calibration of classifier predictions for uncertainty quantification
A. Hagen
K. Pazdernik
Nicole LaHaye
Marjolein Oostrom
UQCV
17
2
0
01 Apr 2022
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration
R. Hebbalaguppe
Jatin Prakash
Neelabh Madan
Chetan Arora
UQCV
25
42
0
25 Mar 2022
Calibration Error for Heterogeneous Treatment Effects
Yizhe Xu
Steve Yadlowsky
33
12
0
24 Mar 2022
Improving the Fairness of Chest X-ray Classifiers
Haoran Zhang
Natalie Dullerud
Karsten Roth
Lauren Oakden-Rayner
Stephen R. Pfohl
Marzyeh Ghassemi
23
65
0
23 Mar 2022
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
Markus Kängsepp
Kaspar Valk
Meelis Kull
35
3
0
16 Mar 2022
Better Uncertainty Calibration via Proper Scores for Classification and Beyond
Sebastian G. Gruber
Florian Buettner
UQCV
14
45
0
15 Mar 2022
T-Cal: An optimal test for the calibration of predictive models
Donghwan Lee
Xinmeng Huang
Hamed Hassani
Yan Sun
24
20
0
03 Mar 2022
Confidence Calibration for Object Detection and Segmentation
Fabian Küppers
Anselm Haselhoff
Jan Kronenberger
Jonas Schneider
UQCV
25
4
0
25 Feb 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
37
12
0
22 Feb 2022
Taking a Step Back with KCal: Multi-Class Kernel-Based Calibration for Deep Neural Networks
Zhen Lin
Shubhendu Trivedi
Jimeng Sun
35
5
0
15 Feb 2022
A Note on "Assessing Generalization of SGD via Disagreement"
Andreas Kirsch
Y. Gal
FedML
UQCV
26
15
0
03 Feb 2022
Hidden Heterogeneity: When to Choose Similarity-Based Calibration
K. Wagstaff
Thomas G. Dietterich
29
1
0
03 Feb 2022
Metrics for saliency map evaluation of deep learning explanation methods
T. Gomez
Thomas Fréour
Harold Mouchère
XAI
FAtt
69
41
0
31 Jan 2022
Barely-Supervised Learning: Semi-Supervised Learning with very few labeled images
Thomas Lucas
Philippe Weinzaepfel
Grégory Rogez
SSL
30
30
0
22 Dec 2021
Improving evidential deep learning via multi-task learning
Dongpin Oh
Bonggun Shin
EDL
UQCV
27
24
0
17 Dec 2021
The Box Size Confidence Bias Harms Your Object Detector
Johannes Gilg
Torben Teepe
Fabian Herzog
Gerhard Rigoll
ObjD
21
4
0
03 Dec 2021
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior Predictive Checks with Deep Learning
Achintya Gopal
UQCV
30
1
0
02 Dec 2021
Case-based off-policy policy evaluation using prototype learning
Anton Matsson
Fredrik D. Johansson
OffRL
6
1
0
22 Nov 2021
Exploiting all samples in low-resource sentence classification: early stopping and initialization parameters
Hongseok Choi
Hyunju Lee
29
3
0
12 Nov 2021
The Science of Rejection: A Research Area for Human Computation
Burcu Sayin
Jie Yang
Andrea Passerini
Fabio Casati
HAI
16
5
0
11 Nov 2021
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective
Zhengzhuo Xu
Zenghao Chai
Chun Yuan
70
52
0
06 Nov 2021
On the use of uncertainty in classifying Aedes Albopictus mosquitoes
Gereziher W. Adhane
Mohammad Mahdi Dehshibi
David Masip
25
7
0
29 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
55
48
0
06 Oct 2021
Does deep learning model calibration improve performance in class-imbalanced medical image classification?
S. Rajaraman
Prasanth Ganesan
Sameer Kiran Antani
196
39
0
29 Sep 2021
Making Heads and Tails of Models with Marginal Calibration for Sparse Tagsets
Michael Kranzlein
Nelson F. Liu
Nathan Schneider
14
3
0
15 Sep 2021
Class-Distribution-Aware Calibration for Long-Tailed Visual Recognition
Mobarakol Islam
Lalithkumar Seenivasan
Hongliang Ren
Ben Glocker
31
18
0
11 Sep 2021
Estimating Expected Calibration Errors
N. Posocco
Antoine Bonnefoy
13
15
0
08 Sep 2021
MACEst: The reliable and trustworthy Model Agnostic Confidence Estimator
Rhys Green
Matthew Rowe
A. Polleri
17
3
0
02 Sep 2021
Effect of the output activation function on the probabilities and errors in medical image segmentation
Lars Nieradzik
G. Scheuermann
D. Saur
Christina Gillmann
SSeg
MedIm
UQCV
35
6
0
02 Sep 2021
Previous
1
2
3
4
5
6
7
Next