ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.12436
  4. Cited By
From Variational to Deterministic Autoencoders

From Variational to Deterministic Autoencoders

29 March 2019
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
    DRL
ArXivPDFHTML

Papers citing "From Variational to Deterministic Autoencoders"

50 / 164 papers shown
Title
eVAE: Evolutionary Variational Autoencoder
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
33
10
0
01 Jan 2023
Hierarchically Structured Task-Agnostic Continual Learning
Hierarchically Structured Task-Agnostic Continual Learning
Heinke Hihn
Daniel A. Braun
BDL
CLL
19
8
0
14 Nov 2022
An efficient graph generative model for navigating ultra-large
  combinatorial synthesis libraries
An efficient graph generative model for navigating ultra-large combinatorial synthesis libraries
Aryan Pedawi
P. Gniewek
Chao-Ling Chang
Brandon M. Anderson
H. V. D. Bedem
34
5
0
19 Oct 2022
Hyper-Representations as Generative Models: Sampling Unseen Neural
  Network Weights
Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights
Konstantin Schurholt
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
55
38
0
29 Sep 2022
Oracle Analysis of Representations for Deep Open Set Detection
Oracle Analysis of Representations for Deep Open Set Detection
Risheek Garrepalli
AAML
62
5
0
22 Sep 2022
Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space
  Energy-based Model
Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space Energy-based Model
Zhisheng Xiao
Tian Han
58
15
0
19 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
32
21
0
15 Sep 2022
Latent Preserving Generative Adversarial Network for Imbalance
  classification
Latent Preserving Generative Adversarial Network for Imbalance classification
T. Dam
Md Meftahul Ferdaus
Mahardhika Pratama
S. Anavatti
Senthilnath Jayavelu
H. Abbass
27
6
0
04 Sep 2022
Large-Scale Auto-Regressive Modeling Of Street Networks
Large-Scale Auto-Regressive Modeling Of Street Networks
Michael Birsak
Tom Kelly
W. Para
Peter Wonka
GNN
AI4TS
9
5
0
01 Sep 2022
Unsupervised Representation Learning in Deep Reinforcement Learning: A
  Review
Unsupervised Representation Learning in Deep Reinforcement Learning: A Review
N. Botteghi
M. Poel
C. Brune
SSL
OffRL
33
10
0
27 Aug 2022
Evaluating Out-of-Distribution Detectors Through Adversarial Generation
  of Outliers
Evaluating Out-of-Distribution Detectors Through Adversarial Generation of Outliers
Sangwoong Yoon
Jinwon Choi
Yonghyeon Lee
Yung-Kyun Noh
Frank C. Park
OODD
19
1
0
20 Aug 2022
Hyper-Representations for Pre-Training and Transfer Learning
Hyper-Representations for Pre-Training and Transfer Learning
Konstantin Schurholt
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
22
10
0
22 Jul 2022
The Free Energy Principle for Perception and Action: A Deep Learning
  Perspective
The Free Energy Principle for Perception and Action: A Deep Learning Perspective
Pietro Mazzaglia
Tim Verbelen
Ozan Çatal
Bart Dhoedt
DRL
AI4CE
30
31
0
13 Jul 2022
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Brendan Leigh Ross
G. Loaiza-Ganem
Anthony L. Caterini
Jesse C. Cresswell
AI4CE
33
2
0
22 Jun 2022
Model-Based Imitation Learning Using Entropy Regularization of Model and
  Policy
Model-Based Imitation Learning Using Entropy Regularization of Model and Policy
E. Uchibe
23
3
0
21 Jun 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
34
28
0
16 Jun 2022
Does Self-supervised Learning Really Improve Reinforcement Learning from
  Pixels?
Does Self-supervised Learning Really Improve Reinforcement Learning from Pixels?
Xiang Li
Jinghuan Shang
Srijan Das
Michael S. Ryoo
SSL
27
31
0
10 Jun 2022
Mitigating Modality Collapse in Multimodal VAEs via Impartial
  Optimization
Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization
Adrián Javaloy
Maryam Meghdadi
Isabel Valera
21
26
0
09 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
35
19
0
06 Jun 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
106
64
0
31 May 2022
Deterministic training of generative autoencoders using invertible
  layers
Deterministic training of generative autoencoders using invertible layers
Gianluigi Silvestri
Daan Roos
L. Ambrogioni
TPM
21
2
0
19 May 2022
SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed
  Stochastic Quantization
SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization
Yuhta Takida
Takashi Shibuya
Wei-Hsiang Liao
Chieh-Hsin Lai
Junki Ohmura
Toshimitsu Uesaka
Naoki Murata
Shusuke Takahashi
Toshiyuki Kumakura
Yuki Mitsufuji
BDL
21
60
0
16 May 2022
A Tale of Two Flows: Cooperative Learning of Langevin Flow and
  Normalizing Flow Toward Energy-Based Model
A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model
Jianwen Xie
Y. Zhu
Juntao Li
Ping Li
24
50
0
13 May 2022
Physics-aware Reduced-order Modeling of Transonic Flow via
  $β$-Variational Autoencoder
Physics-aware Reduced-order Modeling of Transonic Flow via βββ-Variational Autoencoder
Yu-Eop Kang
Sunwoong Yang
K. Yee
DRL
AI4CE
19
25
0
02 May 2022
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
G. Loaiza-Ganem
Brendan Leigh Ross
Jesse C. Cresswell
Anthony L. Caterini
GAN
DRL
19
28
0
14 Apr 2022
Vision-based Distributed Multi-UAV Collision Avoidance via Deep
  Reinforcement Learning for Navigation
Vision-based Distributed Multi-UAV Collision Avoidance via Deep Reinforcement Learning for Navigation
Huaxing Huang
Guijie Zhu
Zhun Fan
Hao Zhai
Yuwei Cai
Zekun Shi
Zhaohui Dong
Zhifeng Hao
23
11
0
05 Mar 2022
Variational Autoencoders Without the Variation
Variational Autoencoders Without the Variation
Gregory A. Daly
J. Fieldsend
G. Tabor
28
2
0
01 Mar 2022
Multi-modal data generation with a deep metric variational autoencoder
Multi-modal data generation with a deep metric variational autoencoder
Josefine Vilsbøll Sundgaard
Morten Rieger Hannemose
S. Laugesen
P. Bray
J. Harte
Y. Kamide
Chiemi Tanaka
Rasmus Paulsen
Anders Christensen
DRL
13
3
0
07 Feb 2022
Enhancing variational generation through self-decomposition
Enhancing variational generation through self-decomposition
Andrea Asperti
Laura Bugo
Daniele Filippini
DRL
46
2
0
06 Feb 2022
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
  Low-Dimensional Latents
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey
Avideep Mukherjee
Piyush Rai
Abhishek Kumar
DiffM
28
114
0
02 Jan 2022
InvGAN: Invertible GANs
InvGAN: Invertible GANs
Partha Ghosh
Dominik Zietlow
Michael J. Black
Larry S. Davis
Xiaochen Hu
DiffM
29
7
0
08 Dec 2021
Probabilistic Tracking with Deep Factors
Probabilistic Tracking with Deep Factors
F. Jiang
Andrew Marmon
Ildebrando De Courten
M. Rasi
F. Dellaert
29
1
0
02 Dec 2021
Forward Operator Estimation in Generative Models with Kernel Transfer
  Operators
Forward Operator Estimation in Generative Models with Kernel Transfer Operators
Z. Huang
Rudrasis Chakraborty
Vikas Singh
GAN
14
3
0
01 Dec 2021
Joint inference and input optimization in equilibrium networks
Joint inference and input optimization in equilibrium networks
Swaminathan Gurumurthy
Shaojie Bai
Zachary Manchester
J. Zico Kolter
32
19
0
25 Nov 2021
Group-disentangled Representation Learning with Weakly-Supervised
  Regularization
Group-disentangled Representation Learning with Weakly-Supervised Regularization
Linh-Tam Tran
Amir Hosein Khasahmadi
Aditya Sanghi
Saeid Asgari Taghanaki
DRL
34
1
0
23 Oct 2021
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent
  Space Distribution Matching in WAE
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent Space Distribution Matching in WAE
Devansh Arpit
Aadyot Bhatnagar
Huan Wang
Caiming Xiong
18
0
0
19 Oct 2021
Learning Temporally-Consistent Representations for Data-Efficient
  Reinforcement Learning
Learning Temporally-Consistent Representations for Data-Efficient Reinforcement Learning
Trevor A. McInroe
Lukas Schafer
Stefano V. Albrecht
OffRL
23
8
0
11 Oct 2021
Seeking Visual Discomfort: Curiosity-driven Representations for
  Reinforcement Learning
Seeking Visual Discomfort: Curiosity-driven Representations for Reinforcement Learning
Elie Aljalbout
Maximilian Ulmer
Rudolph Triebel
16
2
0
02 Oct 2021
Exploratory State Representation Learning
Exploratory State Representation Learning
Astrid Merckling
Nicolas Perrin-Gilbert
Alexandre Coninx
Stéphane Doncieux
OffRL
35
6
0
28 Sep 2021
Deep Variational Clustering Framework for Self-labeling of Large-scale
  Medical Images
Deep Variational Clustering Framework for Self-labeling of Large-scale Medical Images
Farzin Soleymani
M. Eslami
T. Elze
B. Bischl
Mina Rezaei
22
5
0
22 Sep 2021
LDC-VAE: A Latent Distribution Consistency Approach to Variational
  AutoEncoders
LDC-VAE: A Latent Distribution Consistency Approach to Variational AutoEncoders
Xiaoyu Chen
Chen Gong
Qiang He
Xinwen Hou
Yu Liu
28
1
0
22 Sep 2021
Joint Debiased Representation Learning and Imbalanced Data Clustering
Joint Debiased Representation Learning and Imbalanced Data Clustering
Mina Rezaei
Emilio Dorigatti
David Rügamer
Bernd Bischl
SSL
27
3
0
11 Sep 2021
Sentence Bottleneck Autoencoders from Transformer Language Models
Sentence Bottleneck Autoencoders from Transformer Language Models
Ivan Montero
Nikolaos Pappas
Noah A. Smith
AI4CE
19
28
0
31 Aug 2021
Discriminating modelling approaches for Point in Time Economic Scenario
  Generation
Discriminating modelling approaches for Point in Time Economic Scenario Generation
Rui Wang
11
0
0
19 Aug 2021
DRIVE: Deep Reinforced Accident Anticipation with Visual Explanation
DRIVE: Deep Reinforced Accident Anticipation with Visual Explanation
Wentao Bao
Qi Yu
Yu Kong
FAtt
27
39
0
21 Jul 2021
ByPE-VAE: Bayesian Pseudocoresets Exemplar VAE
ByPE-VAE: Bayesian Pseudocoresets Exemplar VAE
Qingzhong Ai
Lirong He
Shiyu Liu
Zenglin Xu
BDL
11
2
0
20 Jul 2021
Smoothing the Disentangled Latent Style Space for Unsupervised
  Image-to-Image Translation
Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-Image Translation
Yahui Liu
E. Sangineto
Yajing Chen
Linchao Bao
Haoxian Zhang
N. Sebe
Bruno Lepri
Wei Wang
Marco De Nadai
DRL
38
44
0
16 Jun 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
23
12
0
11 Jun 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
659
0
10 Jun 2021
VOILA: Visual-Observation-Only Imitation Learning for Autonomous
  Navigation
VOILA: Visual-Observation-Only Imitation Learning for Autonomous Navigation
Haresh Karnan
Garrett A. Warnell
Xuesu Xiao
Peter Stone
22
57
0
19 May 2021
Previous
1234
Next