ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.05779
  4. Cited By
Functional Variational Bayesian Neural Networks

Functional Variational Bayesian Neural Networks

14 March 2019
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
    BDL
ArXiv (abs)PDFHTML

Papers citing "Functional Variational Bayesian Neural Networks"

35 / 85 papers shown
Title
Action and Perception as Divergence Minimization
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
91
53
0
03 Sep 2020
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
107
108
0
24 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDLUQCV
48
0
0
12 Aug 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
111
63
0
20 Jul 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDLUQCV
66
121
0
11 Jul 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
195
645
0
01 Jul 2020
Identifying Causal-Effect Inference Failure with Uncertainty-Aware
  Models
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
76
74
0
01 Jul 2020
Statistical Foundation of Variational Bayes Neural Networks
Statistical Foundation of Variational Bayes Neural Networks
Shrijita Bhattacharya
T. Maiti
BDL
47
11
0
29 Jun 2020
Predictive Complexity Priors
Predictive Complexity Priors
Eric T. Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
BDLUQCV
106
19
0
18 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCVOODBDL
112
103
0
15 Jun 2020
Nonparametric Score Estimators
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
97
24
0
20 May 2020
Rethinking Parameter Counting in Deep Models: Effective Dimensionality
  Revisited
Rethinking Parameter Counting in Deep Models: Effective Dimensionality Revisited
Wesley J. Maddox
Gregory W. Benton
A. Wilson
136
61
0
04 Mar 2020
Safe Imitation Learning via Fast Bayesian Reward Inference from
  Preferences
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel S. Brown
Russell Coleman
R. Srinivasan
S. Niekum
BDL
127
102
0
21 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCVBDLOOD
175
658
0
20 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCVBDL
97
61
0
19 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
107
24
0
10 Feb 2020
The Case for Bayesian Deep Learning
The Case for Bayesian Deep Learning
A. Wilson
UQCVBDLOOD
132
114
0
29 Jan 2020
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
128
1,026
0
22 Dec 2019
A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic
  Retinopathy Tasks
A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic Retinopathy Tasks
Angelos Filos
Sebastian Farquhar
Aidan Gomez
Tim G. J. Rudner
Zachary Kenton
Lewis Smith
Milad Alizadeh
A. D. Kroon
Y. Gal
BDLAAMLOODUQCV
89
109
0
22 Dec 2019
Measuring Uncertainty through Bayesian Learning of Deep Neural Network
  Structure
Measuring Uncertainty through Bayesian Learning of Deep Neural Network Structure
Zhijie Deng
Yucen Luo
Jun Zhu
Bo Zhang
UQCVBDL
45
2
0
22 Nov 2019
Thompson Sampling via Local Uncertainty
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
80
19
0
30 Oct 2019
Compositional uncertainty in deep Gaussian processes
Compositional uncertainty in deep Gaussian processes
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
95
23
0
17 Sep 2019
Automated Spectral Kernel Learning
Automated Spectral Kernel Learning
Jian Li
Yong Liu
Weiping Wang
71
14
0
11 Sep 2019
On the Expressiveness of Approximate Inference in Bayesian Neural
  Networks
On the Expressiveness of Approximate Inference in Bayesian Neural Networks
Andrew Y. K. Foong
David R. Burt
Yingzhen Li
Richard Turner
UQCVBDL
73
20
0
02 Sep 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale
  Bayesian Deep Learning
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCVBDL
106
58
0
01 Jul 2019
Quality of Uncertainty Quantification for Bayesian Neural Network
  Inference
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCVBDL
193
114
0
24 Jun 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
82
77
0
19 Jun 2019
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical
  Bayes
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes
R. Krishnan
Mahesh Subedar
Omesh Tickoo
BDL
80
47
0
12 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
67
8
0
10 Jun 2019
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
150
419
0
17 May 2019
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and
  Periodic Functions
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
Tim Pearce
Russell Tsuchida
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
BDL
72
50
0
15 May 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
115
20
0
07 Feb 2019
Normalized Flat Minima: Exploring Scale Invariant Definition of Flat
  Minima for Neural Networks using PAC-Bayesian Analysis
Normalized Flat Minima: Exploring Scale Invariant Definition of Flat Minima for Neural Networks using PAC-Bayesian Analysis
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
84
77
0
15 Jan 2019
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
121
70
0
06 Jun 2018
Model Selection in Bayesian Neural Networks via Horseshoe Priors
Model Selection in Bayesian Neural Networks via Horseshoe Priors
S. Ghosh
Finale Doshi-Velez
BDL
84
120
0
29 May 2017
Previous
12