Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.05779
Cited By
Functional Variational Bayesian Neural Networks
14 March 2019
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Functional Variational Bayesian Neural Networks"
40 / 40 papers shown
Title
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
Tycho F. A. van der Ouderaa
Mark van der Wilk
Y. Gal
AAML
37
4
0
10 Aug 2024
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
38
1
0
12 Jul 2023
Coherent Soft Imitation Learning
Joe Watson
Sandy H. Huang
Nicholas Heess
32
11
0
25 May 2023
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
23
52
0
11 Nov 2022
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
33
4
0
24 Oct 2022
Efficient Bayes Inference in Neural Networks through Adaptive Importance Sampling
Yunshi Huang
Émilie Chouzenoux
Victor Elvira
J. Pesquet
BDL
26
5
0
03 Oct 2022
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
32
22
0
22 Oct 2021
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
29
20
0
09 Oct 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
41
1,111
0
07 Jul 2021
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
53
94
0
22 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
40
27
0
06 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
79
17
0
23 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
35
1
0
28 Mar 2021
Simultaneously Reconciled Quantile Forecasting of Hierarchically Related Time Series
Xing Han
S. Dasgupta
Joydeep Ghosh
AI4TS
31
34
0
25 Feb 2021
An Active Learning Method for Diabetic Retinopathy Classification with Uncertainty Quantification
Muhammad Ahtazaz Ahsan
A. Qayyum
Junaid Qadir
Adeel Razi
BDL
15
19
0
24 Dec 2020
Incorporating Interpretable Output Constraints in Bayesian Neural Networks
Wanqian Yang
Lars Lorch
Moritz Graule
Himabindu Lakkaraju
Finale Doshi-Velez
UQCV
BDL
17
16
0
21 Oct 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
33
63
0
20 Jul 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
30
625
0
01 Jul 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
27
4
0
21 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
41
100
0
15 Jun 2020
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
32
23
0
20 May 2020
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel S. Brown
Russell Coleman
R. Srinivasan
S. Niekum
BDL
30
101
0
21 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
639
0
20 Feb 2020
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
25
58
0
19 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
12
23
0
10 Feb 2020
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
34
999
0
22 Dec 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
21
14
0
05 Nov 2019
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
16
19
0
30 Oct 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCV
BDL
21
57
0
01 Jul 2019
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCV
BDL
19
113
0
24 Jun 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes
R. Krishnan
Mahesh Subedar
Omesh Tickoo
BDL
20
46
0
12 Jun 2019
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
24
8
0
10 Jun 2019
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
31
398
0
17 May 2019
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
Tim Pearce
Russell Tsuchida
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
BDL
21
48
0
15 May 2019
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
403
0
06 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1