ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00870
  4. Cited By
Scalable optimization-based sampling on function space

Scalable optimization-based sampling on function space

3 March 2019
Johnathan M. Bardsley
Tiangang Cui
Youssef Marzouk
Zheng Wang
ArXivPDFHTML

Papers citing "Scalable optimization-based sampling on function space"

18 / 18 papers shown
Title
Dimension-Robust MCMC in Bayesian Inverse Problems
Dimension-Robust MCMC in Bayesian Inverse Problems
Victor Chen
Matthew M. Dunlop
O. Papaspiliopoulos
Andrew M. Stuart
52
36
0
09 Mar 2018
Parallel local approximation MCMC for expensive models
Parallel local approximation MCMC for expensive models
Patrick R. Conrad
Andrew D. Davis
Youssef Marzouk
Natesh Pillai
Aaron Smith
42
35
0
10 Jul 2016
Bayesian inverse problems with $l_1$ priors: a Randomize-then-Optimize
  approach
Bayesian inverse problems with l1l_1l1​ priors: a Randomize-then-Optimize approach
Zheng Wang
Johnathan M. Bardsley
A. Solonen
Tiangang Cui
Youssef M. Marzouk
37
38
0
07 Jul 2016
Geometric MCMC for Infinite-Dimensional Inverse Problems
Geometric MCMC for Infinite-Dimensional Inverse Problems
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
48
143
0
20 Jun 2016
A randomized maximum a posterior method for posterior sampling of high
  dimensional nonlinear Bayesian inverse problems
A randomized maximum a posterior method for posterior sampling of high dimensional nonlinear Bayesian inverse problems
Kainan Wang
T. Bui-Thanh
Omar Ghattas
38
46
0
11 Feb 2016
Scalable posterior approximations for large-scale Bayesian inverse
  problems via likelihood-informed parameter and state reduction
Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction
Tiangang Cui
Youssef M. Marzouk
Karen E. Willcox
60
62
0
20 Oct 2015
Metropolized Randomized Maximum Likelihood for sampling from multimodal
  distributions
Metropolized Randomized Maximum Likelihood for sampling from multimodal distributions
D. Oliver
27
30
0
30 Jul 2015
On a generalization of the preconditioned Crank-Nicolson Metropolis
  algorithm
On a generalization of the preconditioned Crank-Nicolson Metropolis algorithm
Daniel Rudolf
Björn Sprungk
41
67
0
14 Apr 2015
Transport map accelerated Markov chain Monte Carlo
Transport map accelerated Markov chain Monte Carlo
M. Parno
Youssef Marzouk
OT
80
161
0
17 Dec 2014
Dimension-independent likelihood-informed MCMC
Dimension-independent likelihood-informed MCMC
Tiangang Cui
K. Law
Youssef M. Marzouk
49
200
0
13 Nov 2014
Optimal low-rank approximations of Bayesian linear inverse problems
Optimal low-rank approximations of Bayesian linear inverse problems
Alessio Spantini
A. Solonen
Tiangang Cui
James Martin
L. Tenorio
Youssef Marzouk
73
130
0
13 Jul 2014
Likelihood-informed dimension reduction for nonlinear inverse problems
Likelihood-informed dimension reduction for nonlinear inverse problems
Tiangang Cui
James Martin
Youssef M. Marzouk
A. Solonen
Alessio Spantini
67
159
0
19 Mar 2014
A computational framework for infinite-dimensional Bayesian inverse
  problems: Part II. Stochastic Newton MCMC with application to ice sheet flow
  inverse problems
A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems
N. Petra
James Martin
G. Stadler
Omar Ghattas
68
231
0
28 Aug 2013
A computational framework for infinite-dimensional Bayesian inverse
  problems. Part I: The linearized case, with application to global seismic
  inversion
A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with application to global seismic inversion
T. Bui-Thanh
Omar Ghattas
James Martin
G. Stadler
71
392
0
06 Aug 2013
Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion
Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion
V. H. Hoang
Christoph Schwab
Andrew M. Stuart
81
112
0
10 Jul 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,276
0
09 Jun 2012
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
97
480
0
03 Feb 2012
Diffusion limits of the random walk Metropolis algorithm in high
  dimensions
Diffusion limits of the random walk Metropolis algorithm in high dimensions
Jonathan C. Mattingly
Natesh S. Pillai
Andrew M. Stuart
99
114
0
22 Mar 2010
1