ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.02788
40
35

Parallel local approximation MCMC for expensive models

10 July 2016
Patrick R. Conrad
Andrew D. Davis
Youssef Marzouk
Natesh Pillai
Aaron Smith
ArXivPDFHTML
Abstract

Performing Bayesian inference via Markov chain Monte Carlo (MCMC) can be exceedingly expensive when posterior evaluations invoke the evaluation of a computationally expensive model, such as a system of partial differential equations. In recent work [Conrad et al. JASA 2016, arXiv:1402.1694], we described a framework for constructing and refining local approximations of such models during an MCMC simulation. These posterior--adapted approximations harness regularity of the model to reduce the computational cost of inference while preserving asymptotic exactness of the Markov chain. Here we describe two extensions of that work. First, we prove that samplers running in parallel can collaboratively construct a shared posterior approximation while ensuring ergodicity of each associated chain, providing a novel opportunity for exploiting parallel computation in MCMC. Second, focusing on the Metropolis--adjusted Langevin algorithm, we describe how a proposal distribution can successfully employ gradients and other relevant information extracted from the approximation. We investigate the practical performance of our strategies using two challenging inference problems, the first in subsurface hydrology and the second in glaciology. Using local approximations constructed via parallel chains, we successfully reduce the run time needed to characterize the posterior distributions in these problems from days to hours and from months to days, respectively, dramatically improving the tractability of Bayesian inference.

View on arXiv
Comments on this paper