Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.08835
Cited By
Transfer Learning for Non-Intrusive Load Monitoring
23 February 2019
M. D’Incecco
S. Squartini
Mingjun Zhong
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transfer Learning for Non-Intrusive Load Monitoring"
15 / 15 papers shown
Title
Energy Efficient Deep Multi-Label ON/OFF Classification of Low Frequency Metered Home Appliances
Anže Pirnat
Blaž Bertalanič
Gregor Cerar
M. Mohorčič
Carolina Fortuna
27
3
0
18 Jul 2023
Energy Disaggregation & Appliance Identification in a Smart Home: Transfer Learning enables Edge Computing
M. Shahab
Hasan Mujtaba Buttar
Ahsan Mehmood
Waqas Aman
M. M. U. Rahman
M. W. Nawaz
H. Pervaiz
Q. Abbasi
28
1
0
08 Jan 2023
Towards trustworthy Energy Disaggregation: A review of challenges, methods and perspectives for Non-Intrusive Load Monitoring
Maria Kaselimi
Eftychios E. Protopapadakis
A. Voulodimos
N. Doulamis
Anastasios Doulamis
24
64
0
05 Jul 2022
DP
2
^2
2
-NILM: A Distributed and Privacy-preserving Framework for Non-intrusive Load Monitoring
Shuang Dai
Fanlin Meng
Qian Wang
Xizhong Chen
23
5
0
30 Jun 2022
Learning Task-Aware Energy Disaggregation: a Federated Approach
Ruohong Liu
Yize Chen
23
8
0
14 Apr 2022
Dimensionality Expansion of Load Monitoring Time Series and Transfer Learning for EMS
Blavz Bertalanivc
Jakob Jenko
Carolina Fortuna
11
1
0
06 Apr 2022
FederatedNILM: A Distributed and Privacy-preserving Framework for Non-intrusive Load Monitoring based on Federated Deep Learning
Shuang Dai
Fanlin Meng
Qian Wang
Xizhong Chen
28
18
0
08 Aug 2021
FedNILM: Applying Federated Learning to NILM Applications at the Edge
Yu Zhang
Guoming Tang
Qianyi Huang
Yi Wang
Kui Wu
Keping Yu
17
63
0
07 Jun 2021
Energy Disaggregation using Variational Autoencoders
A. Langevin
M. Carbonneau
M. Cheriet
G. Gagnon
DRL
16
56
0
22 Mar 2021
Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things
Jing Zhang
Dacheng Tao
45
462
0
17 Nov 2020
A Data-Driven Machine Learning Approach for Consumer Modeling with Load Disaggregation
A. K. Zarabie
Sanjoy Das
Hongyu Wu
6
1
0
04 Nov 2020
Sequence-to-Sequence Load Disaggregation Using Multi-Scale Residual Neural Network
Gan Zhou
Zhi Li
Meng Fu
Yanjun Feng
Xingyao Wang
Chengwei Huang
8
44
0
25 Sep 2020
Exploring Bayesian Surprise to Prevent Overfitting and to Predict Model Performance in Non-Intrusive Load Monitoring
Richard Jones
Christoph Klemenjak
S. Makonin
Ivan V. Bajić
6
3
0
16 Sep 2020
Sequence to Point Learning Based on Bidirectional Dilated Residual Network for Non Intrusive Load Monitoring
Ziyue Jia
Linfeng Yang
Zhenrong Zhang
Hui Liu
Fannie Kong
9
60
0
30 May 2020
On Metrics to Assess the Transferability of Machine Learning Models in Non-Intrusive Load Monitoring
Christoph Klemenjak
A. Faustine
S. Makonin
W. Elmenreich
9
16
0
12 Dec 2019
1