ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.03591
26
18

FederatedNILM: A Distributed and Privacy-preserving Framework for Non-intrusive Load Monitoring based on Federated Deep Learning

8 August 2021
Shuang Dai
Fanlin Meng
Qian Wang
Xizhong Chen
ArXivPDFHTML
Abstract

Non-intrusive load monitoring (NILM), which usually utilizes machine learning methods and is effective in disaggregating smart meter readings from the household-level into appliance-level consumptions, can help to analyze electricity consumption behaviours of users and enable practical smart energy and smart grid applications. However, smart meters are privately owned and distributed, which make real-world applications of NILM challenging. To this end, this paper develops a distributed and privacy-preserving federated deep learning framework for NILM (FederatedNILM), which combines federated learning with a state-of-the-art deep learning architecture to conduct NILM for the classification of typical states of household appliances. Through extensive comparative experiments, the effectiveness of the proposed FederatedNILM framework is demonstrated.

View on arXiv
Comments on this paper