ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.05148
  4. Cited By
Probabilistic Generative Deep Learning for Molecular Design

Probabilistic Generative Deep Learning for Molecular Design

11 February 2019
Daniel T. Chang
    BDL
    AI4CE
ArXivPDFHTML

Papers citing "Probabilistic Generative Deep Learning for Molecular Design"

12 / 12 papers shown
Title
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
773
8,533
0
03 Jan 2019
Concept-Oriented Deep Learning: Generative Concept Representations
Concept-Oriented Deep Learning: Generative Concept Representations
Daniel T. Chang
DRL
GAN
BDL
60
12
0
15 Nov 2018
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
121
209
0
07 Sep 2018
Constrained Graph Variational Autoencoders for Molecule Design
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
75
456
0
23 May 2018
Syntax-Directed Variational Autoencoder for Structured Data
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
102
328
0
24 Feb 2018
Molecular Structure Extraction From Documents Using Deep Learning
Molecular Structure Extraction From Documents Using Deep Learning
Joshua Staker
Kyle Marshall
Robert Abel
Carolyn McQuaw
51
75
0
14 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
352
1,368
0
12 Feb 2018
SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for
  Predicting Chemical Properties
SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for Predicting Chemical Properties
Garrett B. Goh
Nathan Oken Hodas
Charles Siegel
Abhinav Vishnu
39
143
0
06 Dec 2017
Grammar Variational Autoencoder
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDL
DRL
83
843
0
06 Mar 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
161
2,932
0
07 Oct 2016
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
111
2,362
0
19 Nov 2015
Convolutional Networks on Graphs for Learning Molecular Fingerprints
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams
GNN
223
3,352
0
30 Sep 2015
1