Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.03229
Cited By
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces
8 February 2019
Johannes Kirschner
Mojmír Mutný
N. Hiller
R. Ischebeck
Andreas Krause
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces"
30 / 30 papers shown
Title
Safety and optimality in learning-based control at low computational cost
Dominik Baumann
Krzysztof Kowalczyk
Cristian R. Rojas
K. Tiels
Pawel Wachel
34
0
0
12 May 2025
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Cen-You Li
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
OffRL
178
0
0
26 Jan 2025
ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning
Yarden As
Bhavya Sukhija
Lenart Treven
Carmelo Sferrazza
Stelian Coros
Andreas Krause
33
1
0
12 Oct 2024
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
44
4
0
07 Jun 2024
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Dawei Zhan
51
5
0
18 Apr 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
32
17
0
03 Feb 2024
Towards Safe Multi-Task Bayesian Optimization
Jannis O. Lübsen
Christian Hespe
Annika Eichler
26
3
0
12 Dec 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas Desautels
Yuxin Chen
30
6
0
25 Jul 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
13
4
0
16 Feb 2023
A Bayesian Optimization approach for calibrating large-scale activity-based transport models
S. Agriesti
Vladimir Kuzmanovski
Jaakko Hollmén
C. Roncoli
Bat-hen Nahmias-Biran
29
5
0
07 Feb 2023
Information-Theoretic Safe Exploration with Gaussian Processes
A. Bottero
Carlos E. Luis
Julia Vinogradska
Felix Berkenkamp
Jan Peters
31
13
0
09 Dec 2022
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
43
7
0
14 Nov 2022
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
33
4
0
24 Oct 2022
Active Exploration via Experiment Design in Markov Chains
Mojmír Mutný
Tadeusz Janik
Andreas Krause
41
14
0
29 Jun 2022
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian Optimization
Gilhyun Ryou
E. Tal
S. Karaman
26
4
0
01 Jun 2022
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
Mojmír Mutný
Andreas Krause
35
11
0
26 May 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
30
4
0
10 May 2022
GoSafeOpt: Scalable Safe Exploration for Global Optimization of Dynamical Systems
Bhavya Sukhija
M. Turchetta
David Lindner
Andreas Krause
Sebastian Trimpe
Dominik Baumann
31
17
0
24 Jan 2022
Safety-Aware Preference-Based Learning for Safety-Critical Control
Ryan K. Cosner
Maegan Tucker
Andrew J. Taylor
Kejun Li
Tamás G. Molnár
Wyatt Ubellacker
Anil Alan
G. Orosz
Yisong Yue
Aaron D. Ames
31
24
0
15 Dec 2021
Is the Rush to Machine Learning Jeopardizing Safety? Results of a Survey
M. Askarpour
Alan Wassyng
M. Lawford
R. Paige
Z. Diskin
23
0
0
29 Nov 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications
A. Capone
Armin Lederer
Sandra Hirche
29
18
0
06 Sep 2021
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
E. Han
Ishank Arora
Jonathan Scarlett
TPM
AI4CE
30
17
0
24 Dec 2020
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
Tor Lattimore
Andreas Krause
16
46
0
25 Feb 2020
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
30
77
0
20 Feb 2020
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
33
95
0
20 Feb 2020
Projective Preferential Bayesian Optimization
P. Mikkola
Milica Todorović
J. Järvi
Patrick Rinke
Samuel Kaski
20
18
0
08 Feb 2020
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
22
14
0
27 Nov 2019
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
29
54
0
27 Sep 2019
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
403
0
06 Mar 2017
1