Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.01889
Cited By
Analyzing and Improving Representations with the Soft Nearest Neighbor Loss
5 February 2019
Nicholas Frosst
Nicolas Papernot
Geoffrey E. Hinton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Analyzing and Improving Representations with the Soft Nearest Neighbor Loss"
35 / 35 papers shown
Title
Implicit Contrastive Representation Learning with Guided Stop-gradient
Byeongchan Lee
Sehyun Lee
SSL
89
2
0
12 Mar 2025
On the Surprising Efficacy of Distillation as an Alternative to Pre-Training Small Models
Sean Farhat
Deming Chen
47
0
0
04 Apr 2024
Unsupervised Contrastive Learning for Robust RF Device Fingerprinting Under Time-Domain Shift
Jun Chen
Weng-Keen Wong
B. Hamdaoui
55
3
0
06 Mar 2024
Uncovering Intermediate Variables in Transformers using Circuit Probing
Michael A. Lepori
Thomas Serre
Ellie Pavlick
78
7
0
07 Nov 2023
Bucks for Buckets (B4B): Active Defenses Against Stealing Encoders
Jan Dubiñski
Stanislaw Pawlak
Franziska Boenisch
Tomasz Trzciñski
Adam Dziedzic
AAML
36
3
0
12 Oct 2023
Contrastive Initial State Buffer for Reinforcement Learning
Nico Messikommer
Yunlong Song
Davide Scaramuzza
OffRL
49
9
0
18 Sep 2023
Tomato Maturity Recognition with Convolutional Transformers
Asim Khan
Taimur Hassan
Muhammad Shafay
Israa Fahmy
Naoufel Werghi
Seneviratne Mudigansalage
Irfan Hussain
ViT
42
24
0
04 Jul 2023
Systematic Architectural Design of Scale Transformed Attention Condenser DNNs via Multi-Scale Class Representational Response Similarity Analysis
Andrew Hryniowski
Alexander Wong
23
0
0
16 Jun 2023
Analyzing Text Representations by Measuring Task Alignment
César González-Gutiérrez
Audi Primadhanty
Francesco Cazzaro
A. Quattoni
23
1
0
31 May 2023
Inversion dynamics of class manifolds in deep learning reveals tradeoffs underlying generalisation
Simone Ciceri
Lorenzo Cassani
Matteo Osella
P. Rotondo
P. Pizzochero
M. Gherardi
44
7
0
09 Mar 2023
Coarse-to-Fine Contrastive Learning on Graphs
Peiyao Zhao
Yuangang Pan
Xin Li
Xu Chen
Ivor W. Tsang
L. Liao
SSL
42
5
0
13 Dec 2022
Mitigating Data Sparsity for Short Text Topic Modeling by Topic-Semantic Contrastive Learning
Xiaobao Wu
A. Luu
Xinshuai Dong
30
44
0
23 Nov 2022
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
Can Yaras
Peng Wang
Zhihui Zhu
Laura Balzano
Qing Qu
27
42
0
19 Sep 2022
Semantic-based Pre-training for Dialogue Understanding
Xuefeng Bai
Linfeng Song
Yue Zhang
43
7
0
19 Sep 2022
Improving Meta-Learning Generalization with Activation-Based Early-Stopping
Simon Guiroy
C. Pal
Gonçalo Mordido
Sarath Chandar
40
3
0
03 Aug 2022
On the Difficulty of Defending Self-Supervised Learning against Model Extraction
Adam Dziedzic
Nikita Dhawan
Muhammad Ahmad Kaleem
Jonas Guan
Nicolas Papernot
MIACV
56
22
0
16 May 2022
Empirical Evaluation and Theoretical Analysis for Representation Learning: A Survey
Kento Nozawa
Issei Sato
AI4TS
29
4
0
18 Apr 2022
Logit Normalization for Long-tail Object Detection
Liang Zhao
Yao Teng
Limin Wang
33
10
0
31 Mar 2022
Incremental Few-Shot Learning via Implanting and Compressing
Yiting Li
H. Zhu
Xijia Feng
Zilong Cheng
Jun Ma
Cheng Xiang
P. Vadakkepat
T. Lee
CLL
VLM
27
2
0
19 Mar 2022
Contrastive Boundary Learning for Point Cloud Segmentation
Liyao Tang
Yibing Zhan
Zhe Chen
Baosheng Yu
Dacheng Tao
3DPC
38
103
0
10 Mar 2022
Learning Debiased and Disentangled Representations for Semantic Segmentation
Sanghyeok Chu
Dongwan Kim
Bohyung Han
24
22
0
31 Oct 2021
A Closer Look at Few-Shot Video Classification: A New Baseline and Benchmark
Zhenxi Zhu
Limin Wang
Sheng Guo
Gangshan Wu
45
32
0
24 Oct 2021
On the Challenges of Open World Recognitionunder Shifting Visual Domains
Dario Fontanel
Fabio Cermelli
Massimiliano Mancini
Barbara Caputo
32
1
0
09 Jul 2021
Dissecting Supervised Contrastive Learning
Florian Graf
Christoph Hofer
Marc Niethammer
Roland Kwitt
SSL
117
70
0
17 Feb 2021
On Episodes, Prototypical Networks, and Few-shot Learning
Steinar Laenen
Luca Bertinetto
20
97
0
17 Dec 2020
A Systematic Review on Model Watermarking for Neural Networks
Franziska Boenisch
AAML
11
64
0
25 Sep 2020
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
24
23
0
22 Jul 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
46
100
0
15 Jun 2020
Calibrated neighborhood aware confidence measure for deep metric learning
Maryna Karpusha
Sunghee Yun
István Fehérvári
UQCV
FedML
27
2
0
08 Jun 2020
Transferable Perturbations of Deep Feature Distributions
Nathan Inkawhich
Kevin J Liang
Lawrence Carin
Yiran Chen
AAML
30
84
0
27 Apr 2020
Boosting Deep Open World Recognition by Clustering
Dario Fontanel
Fabio Cermelli
Massimiliano Mancini
Samuel Rota Buló
Elisa Ricci
Barbara Caputo
20
21
0
20 Apr 2020
Entangled Watermarks as a Defense against Model Extraction
Hengrui Jia
Christopher A. Choquette-Choo
Varun Chandrasekaran
Nicolas Papernot
WaLM
AAML
13
218
0
27 Feb 2020
A Closer Look at Domain Shift for Deep Learning in Histopathology
Karin Stacke
Gabriel Eilertsen
Jonas Unger
Claes Lundström
OOD
18
63
0
25 Sep 2019
Defending Against Adversarial Examples with K-Nearest Neighbor
Chawin Sitawarin
David Wagner
AAML
11
29
0
23 Jun 2019
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
329
5,849
0
08 Jul 2016
1