Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09036
Cited By
v1
v2
v3
v4 (latest)
Orthogonal Statistical Learning
25 January 2019
Dylan J. Foster
Vasilis Syrgkanis
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Orthogonal Statistical Learning"
44 / 44 papers shown
Title
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
Mihaela van der Schaar
CML
253
5
0
05 Nov 2024
Automatic debiasing of neural networks via moment-constrained learning
Christian L. Hines
Oliver J. Hines
CML
OOD
136
0
0
29 Sep 2024
Model-agnostic meta-learners for estimating heterogeneous treatment effects over time
Dennis Frauen
Konstantin Hess
Stefan Feuerriegel
153
7
0
07 Jul 2024
Orthogonal Causal Calibration
Justin Whitehouse
Christopher Jung
Vasilis Syrgkanis
Bryan Wilder
Zhiwei Steven Wu
CML
163
1
0
04 Jun 2024
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Yihong Gu
Cong Fang
Peter Bühlmann
Jianqing Fan
OOD
CML
301
2
0
07 May 2024
Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation
Jikai Jin
Vasilis Syrgkanis
CML
198
1
0
22 Feb 2024
Selective Uncertainty Propagation in Offline RL
Sanath Kumar Krishnamurthy
Shrey Modi
Tanmay Gangwani
S. Katariya
Branislav Kveton
A. Rangi
OffRL
207
0
0
01 Feb 2023
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
227
974
0
24 Jan 2019
Robust Estimation of Causal Effects via High-Dimensional Covariate Balancing Propensity Score
Y. Ning
Sida Peng
Kosuke Imai
61
87
0
20 Dec 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
205
775
0
12 Nov 2018
Offline Multi-Action Policy Learning: Generalization and Optimization
Zhengyuan Zhou
Susan Athey
Stefan Wager
OffRL
67
122
0
10 Oct 2018
Deep Neural Networks for Estimation and Inference
M. Farrell
Tengyuan Liang
S. Misra
BDL
186
255
0
26 Sep 2018
Local Linear Forests
R. Friedberg
J. Tibshirani
Susan Athey
Stefan Wager
152
92
0
30 Jul 2018
Optimization over Continuous and Multi-dimensional Decisions with Observational Data
Dimitris Bertsimas
Christopher McCord
119
27
0
11 Jul 2018
Regularized Orthogonal Machine Learning for Nonlinear Semiparametric Models
Denis Nekipelov
Vira Semenova
Vasilis Syrgkanis
85
20
0
13 Jun 2018
Orthogonal Random Forest for Causal Inference
Miruna Oprescu
Vasilis Syrgkanis
Zhiwei Steven Wu
CML
110
111
0
09 Jun 2018
Logistic Regression: The Importance of Being Improper
Dylan J. Foster
Satyen Kale
Haipeng Luo
M. Mohri
Karthik Sridharan
66
78
0
25 Mar 2018
De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers
Victor Chernozhukov
Whitney Newey
Rahul Singh
85
92
0
23 Feb 2018
Policy Evaluation and Optimization with Continuous Treatments
Nathan Kallus
Angela Zhou
OffRL
161
137
0
16 Feb 2018
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
161
551
0
18 Dec 2017
Quasi-Oracle Estimation of Heterogeneous Treatment Effects
Xinkun Nie
Stefan Wager
CML
176
655
0
13 Dec 2017
Orthogonal Machine Learning: Power and Limitations
Lester W. Mackey
Vasilis Syrgkanis
Ilias Zadik
201
42
0
01 Nov 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
218
1,225
0
26 Jun 2017
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
Sören R. Künzel
Jasjeet Sekhon
Peter J. Bickel
Bin Yu
CML
185
930
0
12 Jun 2017
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks
Peter L. Bartlett
Nick Harvey
Christopher Liaw
Abbas Mehrabian
222
434
0
08 Mar 2017
Policy Learning with Observational Data
Susan Athey
Stefan Wager
CML
OffRL
447
183
0
09 Feb 2017
Generalized Random Forests
Susan Athey
J. Tibshirani
Stefan Wager
353
1,371
0
05 Oct 2016
Locally Robust Semiparametric Estimation
Victor Chernozhukov
J. Escanciano
Hidehiko Ichimura
Whitney Newey
J. M. Robins
115
210
0
29 Jul 2016
A vector-contraction inequality for Rademacher complexities
Andreas Maurer
87
261
0
01 May 2016
Learning with Square Loss: Localization through Offset Rademacher Complexity
Tengyuan Liang
Alexander Rakhlin
Karthik Sridharan
101
75
0
21 Feb 2015
Counterfactual Risk Minimization: Learning from Logged Bandit Feedback
Adith Swaminathan
Thorsten Joachims
OffRL
153
167
0
09 Feb 2015
Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models
Xiaohong Chen
Demian Pouzo
71
111
0
05 Nov 2014
Learning without Concentration
S. Mendelson
253
334
0
01 Jan 2014
Program Evaluation and Causal Inference with High-Dimensional Data
A. Belloni
Victor Chernozhukov
Iván Fernández-Val
Christian B. Hansen
CML
236
359
0
11 Nov 2013
Empirical entropy, minimax regret and minimax risk
Alexander Rakhlin
Karthik Sridharan
Alexandre B. Tsybakov
203
82
0
06 Aug 2013
Learning subgaussian classes : Upper and minimax bounds
Guillaume Lecué
S. Mendelson
153
86
0
21 May 2013
Global risk bounds and adaptation in univariate convex regression
Adityanand Guntuboyina
B. Sen
99
81
0
07 May 2013
Domain Adaptation for Statistical Classifiers
Hal Daumé
D. Marcu
OOD
109
912
0
28 Sep 2011
Performance guarantees for individualized treatment rules
Min Qian
Susan Murphy
329
559
0
17 May 2011
Doubly Robust Policy Evaluation and Learning
Miroslav Dudík
John Langford
Lihong Li
OffRL
349
698
0
23 Mar 2011
Optimistic Rates for Learning with a Smooth Loss
Nathan Srebro
Karthik Sridharan
Ambuj Tewari
173
283
0
20 Sep 2010
Empirical Bernstein Bounds and Sample Variance Penalization
Andreas Maurer
Massimiliano Pontil
418
545
0
21 Jul 2009
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
307
801
0
19 Feb 2009
The Offset Tree for Learning with Partial Labels
A. Beygelzimer
John Langford
341
185
0
21 Dec 2008
1