ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08667
21
91

De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers

23 February 2018
Victor Chernozhukov
Whitney Newey
Rahul Singh
ArXivPDFHTML
Abstract

We provide adaptive inference methods, based on ℓ1\ell_1ℓ1​ regularization, for regular (semi-parametric) and non-regular (nonparametric) linear functionals of the conditional expectation function. Examples of regular functionals include average treatment effects, policy effects, and derivatives. Examples of non-regular functionals include average treatment effects, policy effects, and derivatives conditional on a covariate subvector fixed at a point. We construct a Neyman orthogonal equation for the target parameter that is approximately invariant to small perturbations of the nuisance parameters. To achieve this property, we include the Riesz representer for the functional as an additional nuisance parameter. Our analysis yields weak ``double sparsity robustness'': either the approximation to the regression or the approximation to the representer can be ``completely dense'' as long as the other is sufficiently ``sparse''. Our main results are non-asymptotic and imply asymptotic uniform validity over large classes of models, translating into honest confidence bands for both global and local parameters.

View on arXiv
Comments on this paper