ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.00251
16
253

A vector-contraction inequality for Rademacher complexities

1 May 2016
Andreas Maurer
ArXivPDFHTML
Abstract

The contraction inequality for Rademacher averages is extended to Lipschitz functions with vector-valued domains, and it is also shown that in the bounding expression the Rademacher variables can be replaced by arbitrary iid symmetric and sub-gaussian variables. Example applications are given for multi-category learning, K-means clustering and learning-to-learn.

View on arXiv
Comments on this paper