Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.06033
Cited By
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders
17 January 2019
Emile Mathieu
Charline Le Lan
Chris J. Maddison
Ryota Tomioka
Yee Whye Teh
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders"
39 / 39 papers shown
Title
Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices
Thibault de Surrel
Fabien Lotte
Sylvain Chevallier
Florian Yger
60
0
0
03 Feb 2025
A group-theoretic framework for machine learning in hyperbolic spaces
Vladimir Jaćimović
44
0
0
12 Jan 2025
On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
Luis Augenstein
Noémie Jaquier
Tamim Asfour
Leonel Rozo
26
0
0
28 Oct 2024
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
Maciej Trzaskowski
Quan Nguyen
Fred Roosta
AAML
29
4
0
16 May 2024
Hyp-OC: Hyperbolic One Class Classification for Face Anti-Spoofing
Kartik Narayan
Vishal M. Patel
CVBM
41
1
0
22 Apr 2024
HyperVQ: MLR-based Vector Quantization in Hyperbolic Space
Nabarun Goswami
Yusuke Mukuta
Tatsuya Harada
40
4
0
18 Mar 2024
L3DMC: Lifelong Learning using Distillation via Mixed-Curvature Space
Kaushik Roy
Peyman Moghadam
Mehrtash Harandi
24
6
0
31 Jul 2023
Hyperbolic Geometry in Computer Vision: A Survey
Pengfei Fang
Mehrtash Harandi
Trung Le
Dinh Q. Phung
22
4
0
21 Apr 2023
Fully Hyperbolic Convolutional Neural Networks for Computer Vision
Ahmad Bdeir
Kristian Schwethelm
Niels Landwehr
41
10
0
28 Mar 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
26
1
0
24 Mar 2023
Self-Supervised Continual Graph Learning in Adaptive Riemannian Spaces
Li Sun
Junda Ye
Hao Peng
Feiyang Wang
Philip S. Yu
CLL
19
31
0
30 Nov 2022
Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections
Clément Bonet
Laetitia Chapel
Lucas Drumetz
Nicolas Courty
16
14
0
18 Nov 2022
Hyperbolic Deep Reinforcement Learning
Edoardo Cetin
B. Chamberlain
Michael M. Bronstein
Jonathan J. Hunt
43
20
0
04 Oct 2022
Hyperbolic VAE via Latent Gaussian Distributions
Seunghyuk Cho
Juyong Lee
Dongwoo Kim
DRL
52
5
0
30 Sep 2022
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
32
21
0
15 Sep 2022
Prototype Based Classification from Hierarchy to Fairness
Mycal Tucker
J. Shah
FaML
14
6
0
27 May 2022
Poincaré Heterogeneous Graph Neural Networks for Sequential Recommendation
Naicheng Guo
Xiaolei Liu
Shaoshuai Li
Qiongxu Ma
Kaixin Gao
Bing Han
Lin Zheng
Xiaobo Guo
29
14
0
16 May 2022
Visualizing Riemannian data with Rie-SNE
A. Bergsson
Søren Hauberg
30
4
0
17 Mar 2022
Provably Accurate and Scalable Linear Classifiers in Hyperbolic Spaces
Chao Pan
Eli Chien
Puoya Tabaghi
Jianhao Peng
O. Milenkovic
18
3
0
07 Mar 2022
Riemannian statistics meets random matrix theory: towards learning from high-dimensional covariance matrices
Salem Said
Simon Heuveline
Cyrus Mostajeran
9
8
0
01 Mar 2022
A Self-supervised Mixed-curvature Graph Neural Network
Li Sun
Zhongbao Zhang
Junda Ye
Hao Peng
Jiawei Zhang
Sen Su
Philip S. Yu
SSL
33
33
0
10 Dec 2021
Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design
Xiran Fan
Chun-Hao Yang
B. Vemuri
37
18
0
03 Dec 2021
Neural Distance Embeddings for Biological Sequences
Gabriele Corso
Rex Ying
Michal Pándy
Petar Velivcković
J. Leskovec
Pietro Lió
25
40
0
20 Sep 2021
Highly Scalable and Provably Accurate Classification in Poincare Balls
Eli Chien
Chao Pan
Puoya Tabaghi
O. Milenkovic
30
12
0
08 Sep 2021
Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers
Yunhui Guo
Xudong Wang
Yubei Chen
Stella X. Yu
26
45
0
23 Jul 2021
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
24
10
0
25 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
36
61
0
30 Apr 2021
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
27
10
0
14 Mar 2021
Objective-Based Hierarchical Clustering of Deep Embedding Vectors
Stanislav A. Naumov
G. Yaroslavtsev
Dmitrii Avdiukhin
20
23
0
15 Dec 2020
Capturing implicit hierarchical structure in 3D biomedical images with self-supervised hyperbolic representations
Joy Hsu
Jeffrey Gu
Gong-Her Wu
Wah Chiu
Serena Yeung
SSL
36
27
0
03 Dec 2020
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
19
51
0
02 Aug 2020
Mix Dimension in Poincaré Geometry for 3D Skeleton-based Action Recognition
Wei Peng
Jingang Shi
Zhaoqiang Xia
Guoying Zhao
GNN
26
60
0
30 Jul 2020
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
27
119
0
18 Jun 2020
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
16
42
0
18 Jun 2020
The Power Spherical distribution
Nicola De Cao
Wilker Aziz
22
28
0
08 Jun 2020
Fine-Grain Few-Shot Vision via Domain Knowledge as Hyperspherical Priors
B. Haney
Alexander Lavin
11
4
0
23 May 2020
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Constant Curvature Graph Convolutional Networks
Gregor Bachmann
Gary Bécigneul
O. Ganea
GNN
24
132
0
12 Nov 2019
1