Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.05761
Cited By
v1
v2 (latest)
Attentive Neural Processes
17 January 2019
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Attentive Neural Processes"
50 / 273 papers shown
Title
Generative Models as Distributions of Functions
Emilien Dupont
Yee Whye Teh
Arnaud Doucet
95
109
0
09 Feb 2021
Meta-Learning for Koopman Spectral Analysis with Short Time-series
Tomoharu Iwata
Yoshinobu Kawahara
AI4TS
57
0
0
09 Feb 2021
Functional optimal transport: map estimation and domain adaptation for functional data
Jiacheng Zhu
Aritra Guha
Dat Do
Mengdi Xu
X. Nguyen
Ding Zhao
OT
104
8
0
07 Feb 2021
NRTSI: Non-Recurrent Time Series Imputation
Siyuan Shan
Yang Li
Junier B. Oliva
AI4TS
89
37
0
05 Feb 2021
Unsupervised clustering of series using dynamic programming
Karthigan Sinnathamby
Chang-Yu Hou
Lalitha Venkataramanan
V. Gkortsas
Franccois Fleuret
30
0
0
23 Jan 2021
Convolutional conditional neural processes for local climate downscaling
Anna Vaughan
Will Tebbutt
J. S. Hosking
Richard Turner
BDL
89
49
0
20 Jan 2021
The Gaussian Neural Process
W. Bruinsma
James Requeima
Andrew Y. K. Foong
Jonathan Gordon
Richard Turner
BDL
77
29
0
10 Jan 2021
Context-Aware Safe Reinforcement Learning for Non-Stationary Environments
Baiming Chen
Zuxin Liu
Jiacheng Zhu
Mengdi Xu
Wenhao Ding
Ding Zhao
64
38
0
02 Jan 2021
Multi-Instance Aware Localization for End-to-End Imitation Learning
S. Gubbi
Raviteja Upadrashta
Shishir Kolathaya
B. Amrutur
39
1
0
26 Dec 2020
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
105
14
0
15 Dec 2020
NP-ODE: Neural Process Aided Ordinary Differential Equations for Uncertainty Quantification of Finite Element Analysis
Yinan Wang
Kaiwen Wang
W. Cai
Xiaowei Yue
71
4
0
12 Dec 2020
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
110
30
0
25 Nov 2020
A Worrying Analysis of Probabilistic Time-series Models for Sales Forecasting
Seungjae Jung
KyungHyun Kim
Hanock Kwak
Young-Jin Park
AI4TS
34
6
0
21 Nov 2020
Factorized Neural Processes for Neural Processes:
K
K
K
-Shot Prediction of Neural Responses
R. J. Cotton
Fabian H. Sinz
A. Tolias
53
7
0
22 Oct 2020
Function Contrastive Learning of Transferable Meta-Representations
Muhammad Waleed Gondal
S. Joshi
Nasim Rahaman
Stefan Bauer
Manuel Wüthrich
Bernhard Schölkopf
SSL
52
19
0
14 Oct 2020
Meta-Active Learning for Node Response Prediction in Graphs
Tomoharu Iwata
25
0
0
12 Oct 2020
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
98
11
0
09 Oct 2020
Uncertainty in Neural Processes
Saeid Naderiparizi
Ke-Li Chiu
Benjamin Bloem-Reddy
Frank Wood
UQCV
BDL
AI4CE
63
5
0
08 Oct 2020
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
123
23
0
02 Oct 2020
Few-shot Learning for Time-series Forecasting
Tomoharu Iwata
Atsutoshi Kumagai
AI4TS
51
18
0
30 Sep 2020
Message Passing Neural Processes
Ben Day
Cătălina Cangea
Arian R. Jamasb
Pietro Lio
75
12
0
29 Sep 2020
Improving Query Efficiency of Black-box Adversarial Attack
Yang Bai
Yuyuan Zeng
Yong Jiang
Yisen Wang
Shutao Xia
Weiwei Guo
AAML
MLAU
122
53
0
24 Sep 2020
Meta-Learning with Shared Amortized Variational Inference
E. Iakovleva
Jakob Verbeek
Alahari Karteek
OOD
FedML
BDL
55
22
0
27 Aug 2020
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
68
42
0
21 Aug 2020
Learning from Irregularly-Sampled Time Series: A Missing Data Perspective
Steven Cheng-Xian Li
Benjamin M. Marlin
AI4TS
55
56
0
17 Aug 2020
Bootstrapping Neural Processes
Juho Lee
Yoonho Lee
Jungtaek Kim
Eunho Yang
Sung Ju Hwang
Yee Whye Teh
UQCV
BDL
87
43
0
07 Aug 2020
Graph-Based Continual Learning
Binh Tang
David S. Matteson
BDL
CLL
76
37
0
09 Jul 2020
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
Andrew Y. K. Foong
W. Bruinsma
Jonathan Gordon
Yann Dubois
James Requeima
Richard Turner
BDL
93
78
0
02 Jul 2020
Robustifying Sequential Neural Processes
Jaesik Yoon
Gautam Singh
Sungjin Ahn
69
27
0
29 Jun 2020
Set Based Stochastic Subsampling
Bruno Andreis
Seanie Lee
A. Nguyen
Juho Lee
Eunho Yang
Sung Ju Hwang
BDL
44
0
0
25 Jun 2020
Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes
Mengdi Xu
Wenhao Ding
Jiacheng Zhu
Zuxin Liu
Baiming Chen
Ding Zhao
CLL
OffRL
100
35
0
19 Jun 2020
MetaSDF: Meta-learning Signed Distance Functions
Vincent Sitzmann
E. R. Chan
Richard Tucker
Noah Snavely
Gordon Wetzstein
69
251
0
17 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
242
2,585
0
17 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
66
3
0
15 Jun 2020
Task-similarity Aware Meta-learning through Nonparametric Kernel Regression
Arun Venkitaraman
Anders Hansson
B. Wahlberg
84
8
0
12 Jun 2020
Learning to Learn Kernels with Variational Random Features
Xiantong Zhen
Hao Sun
Yingjun Du
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
DRL
72
34
0
11 Jun 2020
Neural Physicist: Learning Physical Dynamics from Image Sequences
Baocheng Zhu
Shijun Wang
James Y. Zhang
AI4CE
31
1
0
09 Jun 2020
Meta Learning as Bayes Risk Minimization
S. Maeda
Toshiki Nakanishi
Masanori Koyama
BDL
28
1
0
02 Jun 2020
From Prediction to Prescription: Evolutionary Optimization of Non-Pharmaceutical Interventions in the COVID-19 Pandemic
Risto Miikkulainen
Olivier Francon
Elliot Meyerson
Xin Qiu
Elisa Canzani
Babak Hodjat
64
3
0
28 May 2020
Kernel Self-Attention in Deep Multiple Instance Learning
Dawid Rymarczyk
Adriana Borowa
Jacek Tabor
Bartosz Zieliñski
SSL
125
6
0
25 May 2020
Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization
Peter Karkus
A. Angelova
Vincent Vanhoucke
Rico Jonschkowski
70
11
0
19 May 2020
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients
S. Hu
Pablo G. Moreno
Yanghua Xiao
Xin Shen
G. Obozinski
Neil D. Lawrence
Andreas C. Damianou
BDL
94
125
0
27 Apr 2020
CAZSL: Zero-Shot Regression for Pushing Models by Generalizing Through Context
Wenyu Zhang
Skyler Seto
Devesh K. Jha
71
5
0
26 Mar 2020
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
83
12
0
17 Mar 2020
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows
Ruizhi Deng
B. Chang
Marcus A. Brubaker
Greg Mori
Andreas M. Lehrmann
104
52
0
24 Feb 2020
Deep Fourier Kernel for Self-Attentive Point Processes
Shixiang Zhu
Minghe Zhang
Ruyi Ding
Yao Xie
3DPC
45
3
0
17 Feb 2020
π
π
π
VAE: a stochastic process prior for Bayesian deep learning with MCMC
Swapnil Mishra
Seth Flaxman
Tresnia Berah
Harrison Zhu
Mikko S. Pakkanen
Samir Bhatt
BDL
31
3
0
17 Feb 2020
Local Nonparametric Meta-Learning
Wonjoon Goo
S. Niekum
85
3
0
09 Feb 2020
Model Inversion Networks for Model-Based Optimization
Aviral Kumar
Sergey Levine
OffRL
97
100
0
31 Dec 2019
MetaFun: Meta-Learning with Iterative Functional Updates
Jin Xu
Jean-François Ton
Hyunjik Kim
Adam R. Kosiorek
Yee Whye Teh
78
68
0
05 Dec 2019
Previous
1
2
3
4
5
6
Next