Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.05353
Cited By
v1
v2
v3 (latest)
A Primer on PAC-Bayesian Learning
16 January 2019
Benjamin Guedj
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Primer on PAC-Bayesian Learning"
50 / 157 papers shown
Title
Position: There Is No Free Bayesian Uncertainty Quantification
Ivan Melev
Goeran Kauermann
UQCV
BDL
86
0
0
04 Jun 2025
Proximal optimal transport divergences
Ricardo Baptista
Panagiota Birmpa
Markos A. Katsoulakis
Luc Rey-Bellet
Benjamin J. Zhang
OT
95
0
0
17 May 2025
Kullback-Leibler excess risk bounds for exponential weighted aggregation in Generalized linear models
Tien Mai
FedML
100
0
0
14 Apr 2025
Optimal sparse phase retrieval via a quasi-Bayesian approach
Tien Mai
79
1
0
13 Apr 2025
How good is PAC-Bayes at explaining generalisation?
Antoine Picard-Weibel
Eugenio Clerico
Roman Moscoviz
Benjamin Guedj
94
0
0
11 Mar 2025
Deep Learning is Not So Mysterious or Different
Andrew Gordon Wilson
101
6
0
03 Mar 2025
Identifying Information from Observations with Uncertainty and Novelty
D. Prijatelj
Timothy J. Ireland
Walter J. Scheirer
125
0
0
16 Jan 2025
High-dimensional prediction for count response via sparse exponential weights
The Tien Mai
71
0
0
20 Oct 2024
Learning via Surrogate PAC-Bayes
Antoine Picard-Weibel
Roman Moscoviz
Benjamin Guedj
61
0
0
14 Oct 2024
Online-to-PAC generalization bounds under graph-mixing dependencies
Baptiste Abeles
Eugenio Clerico
Gergely Neu
89
0
0
11 Oct 2024
A Generalization Result for Convergence in Learning-to-Optimize
Michael Sucker
Peter Ochs
96
0
0
10 Oct 2024
A sparse PAC-Bayesian approach for high-dimensional quantile prediction
The Tien Mai
76
3
0
03 Sep 2024
Misclassification excess risk bounds for PAC-Bayesian classification via convexified loss
The Tien Mai
95
0
0
16 Aug 2024
Generalization of Hamiltonian algorithms
Andreas Maurer
76
1
0
23 May 2024
PAC-Bayesian Generalization Bounds for Knowledge Graph Representation Learning
Jaejun Lee
Minsung Hwang
J. Whang
79
1
0
10 May 2024
Misclassification bounds for PAC-Bayesian sparse deep learning
The Tien Mai
UQCV
BDL
111
4
0
02 May 2024
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard
Rémi Emonet
Amaury Habrard
Emilie Morvant
Valentina Zantedeschi
116
3
0
19 Feb 2024
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
116
4
0
13 Feb 2024
Tighter Generalisation Bounds via Interpolation
Paul Viallard
Maxime Haddouche
Umut Simsekli
Benjamin Guedj
81
3
0
07 Feb 2024
More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms
Hossein Zakerinia
Amin Behjati
Christoph H. Lampert
FedML
86
7
0
06 Feb 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
129
3
0
16 Jan 2024
PAC-Bayes-Chernoff bounds for unbounded losses
Ioar Casado
Luis A. Ortega
A. Masegosa
Aritz Pérez Martínez
113
6
0
02 Jan 2024
PAC-Bayesian Domain Adaptation Bounds for Multi-view learning
Mehdi Hennequin
K. Benabdeslem
H. Elghazel
58
0
0
02 Jan 2024
A note on regularised NTK dynamics with an application to PAC-Bayesian training
Eugenio Clerico
Benjamin Guedj
112
0
0
20 Dec 2023
PAC-Bayes Generalisation Bounds for Dynamical Systems Including Stable RNNs
Deividas Eringis
J. Leth
Zheng-Hua Tan
Rafal Wisniewski
Mihaly Petreczky
52
3
0
15 Dec 2023
Pseudo-Likelihood Inference
Theo Gruner
Boris Belousov
Fabio Muratore
Daniel Palenicek
Jan Peters
84
0
0
28 Nov 2023
Time-Uniform Confidence Spheres for Means of Random Vectors
Ben Chugg
Hongjian Wang
Aaditya Ramdas
203
5
0
14 Nov 2023
Data-Efficient Task Generalization via Probabilistic Model-based Meta Reinforcement Learning
Arjun Bhardwaj
Jonas Rothfuss
Bhavya Sukhija
Yarden As
Marco Hutter
Stelian Coros
Andreas Krause
90
5
0
13 Nov 2023
Estimating optimal PAC-Bayes bounds with Hamiltonian Monte Carlo
Szilvia Ujváry
Gergely Flamich
Vincent Fortuin
José Miguel Hernández Lobato
65
0
0
30 Oct 2023
Graph Neural Networks with a Distribution of Parametrized Graphs
See Hian Lee
Feng Ji
Kelin Xia
Wee Peng Tay
72
0
0
25 Oct 2023
Sequential Gibbs Posteriors with Applications to Principal Component Analysis
Steven Winter
Omar Melikechi
David B. Dunson
77
2
0
19 Oct 2023
Federated Learning with Nonvacuous Generalisation Bounds
Pierre Jobic
Maxime Haddouche
Benjamin Guedj
FedML
78
4
0
17 Oct 2023
Comparing Comparators in Generalization Bounds
Fredrik Hellström
Benjamin Guedj
76
4
0
16 Oct 2023
The surrogate Gibbs-posterior of a corrected stochastic MALA: Towards uncertainty quantification for neural networks
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
92
1
0
13 Oct 2023
Hamiltonian Dynamics of Bayesian Inference Formalised by Arc Hamiltonian Systems
Takuo Matsubara
37
0
0
11 Oct 2023
Statistical Guarantees for Variational Autoencoders using PAC-Bayesian Theory
S. Mbacke
Florence Clerc
Pascal Germain
DRL
104
13
0
07 Oct 2023
A path-norm toolkit for modern networks: consequences, promises and challenges
Antoine Gonon
Nicolas Brisebarre
E. Riccietti
Rémi Gribonval
109
6
0
02 Oct 2023
Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures
H. Flynn
David Reeb
M. Kandemir
Jan Peters
75
9
0
25 Sep 2023
Feature Noise Boosts DNN Generalization under Label Noise
Lu Zeng
Xuan Chen
Xiaoshuang Shi
Jikang Cheng
MLT
NoLa
58
2
0
03 Aug 2023
Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks
Dominik Schnaus
Jongseok Lee
Zorah Lähner
Rudolph Triebel
UQCV
BDL
78
1
0
15 Jul 2023
Transformers in Reinforcement Learning: A Survey
Pranav Agarwal
A. Rahman
P. St-Charles
Simon J. D. Prince
Samira Ebrahimi Kahou
OffRL
108
21
0
12 Jul 2023
Sparsity-aware generalization theory for deep neural networks
Ramchandran Muthukumar
Jeremias Sulam
MLT
58
7
0
01 Jul 2023
On Certified Generalization in Structured Prediction
Bastian Boll
Christoph Schnörr
62
0
0
15 Jun 2023
MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting
Felix Biggs
Antonin Schrab
Arthur Gretton
95
21
0
14 Jun 2023
Learning via Wasserstein-Based High Probability Generalisation Bounds
Paul Viallard
Maxime Haddouche
Umut Simsekli
Benjamin Guedj
77
12
0
07 Jun 2023
Enhance Diffusion to Improve Robust Generalization
Jianhui Sun
Sanchit Sinha
Aidong Zhang
79
4
0
05 Jun 2023
Coherent Soft Imitation Learning
Joe Watson
Sandy H. Huang
Nicholas Heess
91
12
0
25 May 2023
Exponential Smoothing for Off-Policy Learning
Imad Aouali
Victor-Emmanuel Brunel
D. Rohde
Anna Korba
OffRL
82
14
0
25 May 2023
A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods
Veit Wild
Sahra Ghalebikesabi
Dino Sejdinovic
Jeremias Knoblauch
BDL
UQCV
98
16
0
24 May 2023
Exponential Stochastic Inequality
Peter Grünwald
M. F. Pérez-Ortiz
Zakaria Mhammedi
61
1
0
27 Apr 2023
1
2
3
4
Next