Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.05353
Cited By
v1
v2
v3 (latest)
A Primer on PAC-Bayesian Learning
16 January 2019
Benjamin Guedj
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Primer on PAC-Bayesian Learning"
50 / 157 papers shown
Title
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
193
207
0
21 Oct 2021
Perturbated Gradients Updating within Unit Space for Deep Learning
Ching-Hsun Tseng
Liu Cheng
Shin-Jye Lee
Xiaojun Zeng
113
5
0
01 Oct 2021
Learning PAC-Bayes Priors for Probabilistic Neural Networks
Maria Perez-Ortiz
Omar Rivasplata
Benjamin Guedj
M. Gleeson
Jingyu Zhang
John Shawe-Taylor
M. Bober
J. Kittler
UQCV
116
31
0
21 Sep 2021
Kernel PCA with the Nyström method
Fredrik Hallgren
46
3
0
12 Sep 2021
Multi-task Federated Edge Learning (MtFEEL) in Wireless Networks
Sawan Singh Mahara
M. Shruti
B. Bharath
Akash Murthy
FedML
85
0
0
05 Aug 2021
On Margins and Derandomisation in PAC-Bayes
Felix Biggs
Benjamin Guedj
93
20
0
08 Jul 2021
Subgroup Generalization and Fairness of Graph Neural Networks
Jiaqi Ma
Junwei Deng
Qiaozhu Mei
98
82
0
29 Jun 2021
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi
Paul Viallard
Emilie Morvant
Rémi Emonet
Amaury Habrard
Pascal Germain
Benjamin Guedj
FedML
BDL
105
17
0
23 Jun 2021
Wide stochastic networks: Gaussian limit and PAC-Bayesian training
Eugenio Clerico
George Deligiannidis
Arnaud Doucet
111
12
0
17 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
84
28
0
06 Jun 2021
A unified PAC-Bayesian framework for machine unlearning via information risk minimization
Sharu Theresa Jose
Osvaldo Simeone
MU
78
7
0
01 Jun 2021
PAC Bayesian Performance Guarantees for Deep (Stochastic) Networks in Medical Imaging
Anthony Sicilia
Xingchen Zhao
Anastasia Sosnovskikh
Seong Jae Hwang
BDL
UQCV
80
4
0
12 Apr 2021
Stopping Criterion for Active Learning Based on Error Stability
Hideaki Ishibashi
H. Hino
66
12
0
05 Apr 2021
PAC-Bayesian theory for stochastic LTI systems
Deividas Eringis
J. Leth
Zheng-Hua Tan
Rafal Wisniewski
Alireza Fakhrizadeh Esfahani
Mihaly Petreczky
107
9
0
23 Mar 2021
Tighter expected generalization error bounds via Wasserstein distance
Borja Rodríguez Gálvez
Germán Bassi
Ragnar Thobaben
Mikael Skoglund
79
46
0
22 Jan 2021
Bayesian inference in high-dimensional models
Sayantan Banerjee
I. Castillo
S. Ghosal
120
23
0
12 Jan 2021
Minimum Excess Risk in Bayesian Learning
Aolin Xu
Maxim Raginsky
427
40
0
29 Dec 2020
Upper and Lower Bounds on the Performance of Kernel PCA
Maxime Haddouche
Benjamin Guedj
John Shawe-Taylor
120
4
0
18 Dec 2020
Gibbs posterior concentration rates under sub-exponential type losses
Nicholas Syring
Ryan Martin
124
29
0
08 Dec 2020
Generalization bounds for deep learning
Guillermo Valle Pérez
A. Louis
BDL
84
45
0
07 Dec 2020
A PAC-Bayesian Perspective on Structured Prediction with Implicit Loss Embeddings
Théophile Cantelobre
Benjamin Guedj
Maria Perez-Ortiz
John Shawe-Taylor
91
3
0
07 Dec 2020
Risk-Monotonicity in Statistical Learning
Zakaria Mhammedi
144
8
0
28 Nov 2020
Generalized Posteriors in Approximate Bayesian Computation
Sebastian M. Schmon
Patrick W Cannon
Jeremias Knoblauch
111
25
0
17 Nov 2020
A Quantitative Perspective on Values of Domain Knowledge for Machine Learning
Jianyi Yang
Shaolei Ren
FAtt
FaML
61
5
0
17 Nov 2020
Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization
Sharu Theresa Jose
Osvaldo Simeone
G. Durisi
118
17
0
04 Nov 2020
Robust Bayesian Inference for Discrete Outcomes with the Total Variation Distance
Jeremias Knoblauch
Lara Vomfell
72
7
0
26 Oct 2020
Fast-Rate Loss Bounds via Conditional Information Measures with Applications to Neural Networks
Fredrik Hellström
G. Durisi
99
2
0
22 Oct 2020
PAC
m
^m
m
-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
130
16
0
19 Oct 2020
Non-exponentially weighted aggregation: regret bounds for unbounded loss functions
Pierre Alquier
105
19
0
07 Sep 2020
Tighter risk certificates for neural networks
Maria Perez-Ortiz
Omar Rivasplata
John Shawe-Taylor
Csaba Szepesvári
UQCV
93
108
0
25 Jul 2020
Adaptive Task Sampling for Meta-Learning
Chenghao Liu
Zhihao Wang
Doyen Sahoo
Yuan Fang
Kun Zhang
Guosheng Lin
104
55
0
17 Jul 2020
PAC-Bayesian Bound for the Conditional Value at Risk
Zakaria Mhammedi
Benjamin Guedj
Robert C. Williamson
78
21
0
26 Jun 2020
A Limitation of the PAC-Bayes Framework
Roi Livni
Shay Moran
97
25
0
24 Jun 2020
On the role of data in PAC-Bayes bounds
Gintare Karolina Dziugaite
Kyle Hsu
W. Gharbieh
Gabriel Arpino
Daniel M. Roy
90
78
0
19 Jun 2020
PAC-Bayes unleashed: generalisation bounds with unbounded losses
Maxime Haddouche
Benjamin Guedj
Omar Rivasplata
John Shawe-Taylor
100
56
0
12 Jun 2020
Generalization Bounds via Information Density and Conditional Information Density
Fredrik Hellström
G. Durisi
132
67
0
16 May 2020
Practical calibration of the temperature parameter in Gibbs posteriors
Lucie Perrotta
50
3
0
22 Apr 2020
Generalization Error Bounds via
m
m
m
th Central Moments of the Information Density
Fredrik Hellström
G. Durisi
69
5
0
20 Apr 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
104
17
0
14 Apr 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
181
658
0
20 Feb 2020
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees
Jonas Rothfuss
Vincent Fortuin
Martin Josifoski
Andreas Krause
UQCV
93
127
0
13 Feb 2020
Improved PAC-Bayesian Bounds for Linear Regression
V. Shalaeva
Alireza Fakhrizadeh Esfahani
Pascal Germain
Mihaly Petreczky
72
16
0
06 Dec 2019
Unifying Variational Inference and PAC-Bayes for Supervised Learning that Scales
Sanjay Thakur
H. V. Hoof
Gunshi Gupta
David Meger
BDL
42
2
0
23 Oct 2019
PAC-Bayesian Contrastive Unsupervised Representation Learning
Kento Nozawa
Pascal Germain
Benjamin Guedj
SSL
BDL
100
28
0
10 Oct 2019
Still no free lunches: the price to pay for tighter PAC-Bayes bounds
Benjamin Guedj
L. Pujol
FedML
97
23
0
10 Oct 2019
Fast-rate PAC-Bayes Generalization Bounds via Shifted Rademacher Processes
Jun Yang
Shengyang Sun
Daniel M. Roy
95
28
0
20 Aug 2019
Convergence Rates of Variational Inference in Sparse Deep Learning
Badr-Eddine Chérief-Abdellatif
BDL
125
39
0
09 Aug 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
85
13
0
26 Jun 2019
PAC-Bayes Un-Expected Bernstein Inequality
Zakaria Mhammedi
Peter Grünwald
Benjamin Guedj
75
47
0
31 May 2019
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
Gaël Letarte
Pascal Germain
Benjamin Guedj
Franccois Laviolette
MQ
AI4CE
UQCV
93
54
0
24 May 2019
Previous
1
2
3
4
Next