ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06775
  4. Cited By
Variational Autoencoders Pursue PCA Directions (by Accident)

Variational Autoencoders Pursue PCA Directions (by Accident)

17 December 2018
Michal Rolínek
Dominik Zietlow
Georg Martius
    OOD
    DRL
ArXivPDFHTML

Papers citing "Variational Autoencoders Pursue PCA Directions (by Accident)"

35 / 35 papers shown
Title
Robustness of Nonlinear Representation Learning
Robustness of Nonlinear Representation Learning
Simon Buchholz
Bernhard Schölkopf
OOD
170
3
0
19 Mar 2025
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Julius Aka
Johannes Brunnemann
Jörg Eiden
Arne Speerforck
Lars Mikelsons
31
0
0
14 Oct 2024
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically
  Low-dimensional Data
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data
Saptarshi Chakraborty
Peter L. Bartlett
44
1
0
24 Feb 2024
Matching aggregate posteriors in the variational autoencoder
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
37
4
0
13 Nov 2023
Disentanglement Learning via Topology
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
58
2
0
24 Aug 2023
Discovering Causal Relations and Equations from Data
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
35
72
0
21 May 2023
How good are variational autoencoders at transfer learning?
How good are variational autoencoders at transfer learning?
Lisa Bonheme
M. Grzes
OOD
DRL
23
2
0
21 Apr 2023
Correcting Flaws in Common Disentanglement Metrics
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
37
3
0
05 Apr 2023
Causal Triplet: An Open Challenge for Intervention-centric Causal
  Representation Learning
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning
Yuejiang Liu
Alexandre Alahi
Chris Russell
Max Horn
Dominik Zietlow
Bernhard Schölkopf
Francesco Locatello
CML
56
22
0
12 Jan 2023
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Yuma Ichikawa
Akira Nakagawa
Hiromoto Masayuki
Yuhei Umeda
BDL
18
0
0
25 Nov 2022
Disentangled Representation Learning
Disentangled Representation Learning
Xin Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
35
78
0
21 Nov 2022
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain
  MRI with Structured Variational Priors
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain MRI with Structured Variational Priors
Anjun Hu
Jean-Pierre Falet
Brennan Nichyporuk
Changjian Shui
Douglas L. Arnold
Sotirios A. Tsaftaris
Tal Arbel
32
2
0
15 Nov 2022
ZeroEGGS: Zero-shot Example-based Gesture Generation from Speech
ZeroEGGS: Zero-shot Example-based Gesture Generation from Speech
Saeed Ghorbani
Ylva Ferstl
Daniel Holden
N. Troje
M. Carbonneau
32
79
0
15 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
32
21
0
15 Sep 2022
Towards Unsupervised Content Disentanglement in Sentence Representations
  via Syntactic Roles
Towards Unsupervised Content Disentanglement in Sentence Representations via Syntactic Roles
G. Felhi
Joseph Le Roux
Djamé Seddah
DRL
19
5
0
22 Jun 2022
Meta Reinforcement Learning with Finite Training Tasks -- a Density
  Estimation Approach
Meta Reinforcement Learning with Finite Training Tasks -- a Density Estimation Approach
Zohar Rimon
Aviv Tamar
Gilad Adler
OOD
OffRL
34
8
0
21 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
35
19
0
06 Jun 2022
How do Variational Autoencoders Learn? Insights from Representational
  Similarity
How do Variational Autoencoders Learn? Insights from Representational Similarity
Lisa Bonheme
M. Grzes
CoGe
SSL
DRL
27
10
0
17 May 2022
Efficient-VDVAE: Less is more
Efficient-VDVAE: Less is more
Louay Hazami
Rayhane Mama
Ragavan Thurairatnam
BDL
26
28
0
25 Mar 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
31
44
0
17 Mar 2022
Unsupervised Learning of Compositional Energy Concepts
Unsupervised Learning of Compositional Energy Concepts
Yilun Du
Shuang Li
Yash Sharma
J. Tenenbaum
Igor Mordatch
CoGe
OCL
27
76
0
04 Nov 2021
Designing Complex Experiments by Applying Unsupervised Machine Learning
Designing Complex Experiments by Applying Unsupervised Machine Learning
A. Glushkovsky
19
0
0
29 Sep 2021
Be More Active! Understanding the Differences between Mean and Sampled
  Representations of Variational Autoencoders
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
19
6
0
26 Sep 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
28
81
0
16 Dec 2020
Self-supervised Visual Reinforcement Learning with Object-centric
  Representations
Self-supervised Visual Reinforcement Learning with Object-centric Representations
Andrii Zadaianchuk
Maximilian Seitzer
Georg Martius
SSL
OCL
27
41
0
29 Nov 2020
Controlling the Interaction Between Generation and Inference in
  Semi-Supervised Variational Autoencoders Using Importance Weighting
Controlling the Interaction Between Generation and Inference in Semi-Supervised Variational Autoencoders Using Importance Weighting
G. Felhi
Joseph Leroux
Djamé Seddah
BDL
21
1
0
13 Oct 2020
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric
  Embedding
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric Embedding
Akira Nakagawa
Keizo Kato
Taiji Suzuki
DRL
19
9
0
30 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
48
132
0
21 Jul 2020
Towards a Theoretical Understanding of the Robustness of Variational
  Autoencoders
Towards a Theoretical Understanding of the Robustness of Variational Autoencoders
A. Camuto
M. Willetts
Stephen J. Roberts
Chris Holmes
Tom Rainforth
AAML
DRL
26
30
0
14 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
Regularized linear autoencoders recover the principal components,
  eventually
Regularized linear autoencoders recover the principal components, eventually
Xuchan Bao
James Lucas
Sushant Sachdeva
Roger C. Grosse
42
29
0
13 Jul 2020
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
16
75
0
23 Dec 2019
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas
George Tucker
Roger C. Grosse
Mohammad Norouzi
CoGe
DRL
33
179
0
06 Nov 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
117
25
0
05 Sep 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGe
DRL
15
93
0
26 Aug 2019
1