ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06597
  4. Cited By
Learning Student Networks via Feature Embedding

Learning Student Networks via Feature Embedding

17 December 2018
Hanting Chen
Yunhe Wang
Chang Xu
Chao Xu
Dacheng Tao
ArXivPDFHTML

Papers citing "Learning Student Networks via Feature Embedding"

30 / 30 papers shown
Title
Exploring Feature-based Knowledge Distillation for Recommender System: A Frequency Perspective
Exploring Feature-based Knowledge Distillation for Recommender System: A Frequency Perspective
Zhangchi Zhu
Wei Zhang
57
0
0
16 Nov 2024
Learning to Learn from APIs: Black-Box Data-Free Meta-Learning
Learning to Learn from APIs: Black-Box Data-Free Meta-Learning
Zixuan Hu
Li Shen
Zhenyi Wang
Baoyuan Wu
Chun Yuan
Dacheng Tao
74
7
0
28 May 2023
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture
  Design
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
108
4,957
0
30 Jul 2018
Robust Student Network Learning
Robust Student Network Learning
Tianyu Guo
Chang Xu
Shiyi He
Boxin Shi
Chao Xu
Dacheng Tao
OOD
44
30
0
30 Jul 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
101
19,124
0
13 Jan 2018
Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions
Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions
Bichen Wu
Alvin Wan
Xiangyu Yue
Peter H. Jin
Sicheng Zhao
Noah Golmant
A. Gholaminejad
Joseph E. Gonzalez
Kurt Keutzer
3DPC
47
363
0
22 Nov 2017
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
106
6,830
0
04 Jul 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.0K
20,692
0
17 Apr 2017
Paying More Attention to Attention: Improving the Performance of
  Convolutional Neural Networks via Attention Transfer
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
Sergey Zagoruyko
N. Komodakis
83
2,561
0
12 Dec 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
240
37,704
0
20 May 2016
Convolution in Convolution for Network in Network
Convolution in Convolution for Network in Network
Yanwei Pang
Manli Sun
Xiaoheng Jiang
Xuelong Li
48
167
0
22 Mar 2016
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
  Networks
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
Mohammad Rastegari
Vicente Ordonez
Joseph Redmon
Ali Farhadi
MQ
122
4,342
0
16 Mar 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
100
7,448
0
24 Feb 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
94
1,349
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
998
192,638
0
10 Dec 2015
Representational Distance Learning for Deep Neural Networks
Representational Distance Learning for Deep Neural Networks
Patrick McClure
N. Kriegeskorte
29
48
0
12 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
168
8,793
0
01 Oct 2015
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
169
6,628
0
08 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
343
61,900
0
04 Jun 2015
Compressing Neural Networks with the Hashing Trick
Compressing Neural Networks with the Hashing Trick
Wenlin Chen
James T. Wilson
Stephen Tyree
Kilian Q. Weinberger
Yixin Chen
72
1,190
0
19 Apr 2015
LSTM: A Search Space Odyssey
LSTM: A Search Space Odyssey
Klaus Greff
R. Srivastava
Jan Koutník
Bas R. Steunebrink
Jürgen Schmidhuber
AI4TS
VLM
62
5,274
0
13 Mar 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
100
19,448
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
210
43,154
0
11 Feb 2015
FitNets: Hints for Thin Deep Nets
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
193
3,862
0
19 Dec 2014
Compressing Deep Convolutional Networks using Vector Quantization
Compressing Deep Convolutional Networks using Vector Quantization
Yunchao Gong
Liu Liu
Ming Yang
Lubomir D. Bourdev
MQ
56
1,168
0
18 Dec 2014
Flattened Convolutional Neural Networks for Feedforward Acceleration
Flattened Convolutional Neural Networks for Feedforward Acceleration
Jonghoon Jin
Aysegül Dündar
Eugenio Culurciello
37
245
0
17 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
650
99,991
0
04 Sep 2014
Exploiting Linear Structure Within Convolutional Networks for Efficient
  Evaluation
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
FAtt
83
1,682
0
02 Apr 2014
Do Deep Nets Really Need to be Deep?
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
124
2,114
0
21 Dec 2013
Maxout Networks
Maxout Networks
Ian Goodfellow
David Warde-Farley
M. Berk Mirza
Aaron Courville
Yoshua Bengio
OOD
161
2,177
0
18 Feb 2013
1