Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.03889
Cited By
Regularization by architecture: A deep prior approach for inverse problems
10 December 2018
Sören Dittmer
T. Kluth
Peter Maass
Daniel Otero Baguer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Regularization by architecture: A deep prior approach for inverse problems"
31 / 31 papers shown
Title
Optimization Landscapes Learned: Proxy Networks Boost Convergence in Physics-based Inverse Problems
Girnar Goyal
Philipp Holl
Sweta Agrawal
Nils Thuerey
AI4CE
48
0
0
27 Jan 2025
Disentangled Representation Learning for Parametric Partial Differential Equations
Ning Liu
Lu Zhang
Tian Gao
Yue Yu
DRL
AI4CE
47
0
0
03 Oct 2024
Nonlocal Attention Operator: Materializing Hidden Knowledge Towards Interpretable Physics Discovery
Yue Yu
Ning Liu
Fei Lu
Tian Gao
S. Jafarzadeh
Stewart Silling
AI4CE
48
7
0
14 Aug 2024
SDIP: Self-Reinforcement Deep Image Prior Framework for Image Processing
Ziyu Shu
Zhixin Pan
23
2
0
17 Apr 2024
Heterogeneous Peridynamic Neural Operators: Discover Biotissue Constitutive Law and Microstructure From Digital Image Correlation Measurements
S. Jafarzadeh
Stewart Silling
Lu Zhang
Colton J. Ross
Chung-Hao Lee
S. M. R. Rahman
Shuodao Wang
Yue Yu
28
5
0
27 Mar 2024
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
31
0
0
19 Feb 2024
Weakly Convex Regularisers for Inverse Problems: Convergence of Critical Points and Primal-Dual Optimisation
Zakhar Shumaylov
Jeremy Budd
Subhadip Mukherjee
Carola-Bibiane Schönlieb
26
6
0
01 Feb 2024
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
26
5
0
19 Aug 2023
SVD-DIP: Overcoming the Overfitting Problem in DIP-based CT Reconstruction
Marco Nittscher
Michael Lameter
Riccardo Barbano
Johannes Leuschner
Bangti Jin
Peter Maass
28
3
0
28 Mar 2023
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
23
34
0
06 Dec 2022
K-UNN: k-Space Interpolation With Untrained Neural Network
Zhuoxu Cui
Seng Jia
Qingyong Zhu
Congcong Liu
Zhilang Qiu
Yuanyuan Liu
Jing Cheng
Haifeng Wang
Yanjie Zhu
Dong Liang
11
1
0
11 Aug 2022
CNN-based Euler's Elastica Inpainting with Deep Energy and Deep Image Prior
Karl Schrader
Tobias Alt
Joachim Weickert
M. Ertel
15
5
0
16 Jul 2022
An Educated Warm Start For Deep Image Prior-Based Micro CT Reconstruction
Riccardo Barbano
Johannes Leuschner
Maximilian Schmidt
Alexander Denker
A. Hauptmann
Peter Maass
Bangti Jin
34
19
0
23 Nov 2021
Deformable image registration with deep network priors: a study on longitudinal PET images
Constance Fourcade
L. Ferrer
Noémie Moreau
Gianmarco Santini
Aislinn Brennan
...
M. Colombié
P. Jézéquel
Mario Campone
M. Rubeaux
Diana Mateus
MedIm
11
4
0
22 Nov 2021
Survey of Deep Learning Methods for Inverse Problems
S. Kamyab
Zihreh Azimifar
Rasool Sabzi
Paul Fieguth
21
3
0
07 Nov 2021
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
38
21
0
10 Oct 2021
Regularising Inverse Problems with Generative Machine Learning Models
Margaret Duff
Neill D. F. Campbell
Matthias Joachim Ehrhardt
GAN
MedIm
29
34
0
22 Jul 2021
Unsupervised Knowledge-Transfer for Learned Image Reconstruction
Riccardo Barbano
Ž. Kereta
A. Hauptmann
Simon Arridge
Bangti Jin
21
11
0
06 Jul 2021
Learning Regularization Parameters of Inverse Problems via Deep Neural Networks
B. Afkham
Julianne Chung
Matthias Chung
17
42
0
14 Apr 2021
A Design Space Study for LISTA and Beyond
Tianjian Meng
Xiaohan Chen
Yi Ding
Zhangyang Wang
20
3
0
08 Apr 2021
Learned convex regularizers for inverse problems
Subhadip Mukherjee
Sören Dittmer
Zakhar Shumaylov
Sebastian Lunz
Ozan Oktem
Carola-Bibiane Schönlieb
25
79
0
06 Aug 2020
Deep Learning Methods for Solving Linear Inverse Problems: Research Directions and Paradigms
Yanna Bai
Wei Chen
Jie Chen
Weisi Guo
31
66
0
27 Jul 2020
Deep image prior for 3D magnetic particle imaging: A quantitative comparison of regularization techniques on Open MPI dataset
Sören Dittmer
T. Kluth
Mads Thorstein Roar Henriksen
Peter Maass
18
17
0
03 Jul 2020
Regularization of Inverse Problems by Neural Networks
Markus Haltmeier
Linh V. Nguyen
30
18
0
06 Jun 2020
Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods
Daniel Otero Baguer
Johannes Leuschner
Maximilian Schmidt
29
186
0
10 Mar 2020
Translating Diffusion, Wavelets, and Regularisation into Residual Networks
Tobias Alt
Joachim Weickert
Pascal Peter
DiffM
16
8
0
07 Feb 2020
Learned imaging with constraints and uncertainty quantification
Felix J. Herrmann
Ali Siahkoohi
G. Rizzuti
UQCV
22
23
0
13 Sep 2019
Neural reparameterization improves structural optimization
Stephan Hoyer
Jascha Narain Sohl-Dickstein
S. Greydanus
AI4CE
26
67
0
10 Sep 2019
A Projectional Ansatz to Reconstruction
Sören Dittmer
Peter Maass
14
3
0
10 Jul 2019
One-dimensional Deep Image Prior for Time Series Inverse Problems
Sriram Ravula
A. Dimakis
42
7
0
18 Apr 2019
Compressed Sensing with Deep Image Prior and Learned Regularization
Dave Van Veen
A. Jalal
Mahdi Soltanolkotabi
Eric Price
S. Vishwanath
A. Dimakis
33
178
0
17 Jun 2018
1