ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04675
9
3

A Projectional Ansatz to Reconstruction

10 July 2019
Sören Dittmer
Peter Maass
ArXivPDFHTML
Abstract

Recently the field of inverse problems has seen a growing usage of mathematically only partially understood learned and non-learned priors. Based on first principles, we develop a projectional approach to inverse problems that addresses the incorporation of these priors, while still guaranteeing data consistency. We implement this projectional method (PM) on the one hand via very general Plug-and-Play priors and on the other hand, via an end-to-end training approach. To this end, we introduce a novel alternating neural architecture, allowing for the incorporation of highly customized priors from data in a principled manner. We also show how the recent success of Regularization by Denoising (RED) can, at least to some extent, be explained as an approximation of the PM. Furthermore, we demonstrate how the idea can be applied to stop the degradation of Deep Image Prior (DIP) reconstructions over time.

View on arXiv
Comments on this paper