Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.02637
Cited By
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
6 December 2018
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MMA Training: Direct Input Space Margin Maximization through Adversarial Training"
50 / 69 papers shown
Title
Dynamic Guidance Adversarial Distillation with Enhanced Teacher Knowledge
Hyejin Park
Dongbo Min
AAML
42
2
0
03 Sep 2024
A Hybrid Training-time and Run-time Defense Against Adversarial Attacks in Modulation Classification
Lu Zhang
S. Lambotharan
G. Zheng
G. Liao
Ambra Demontis
Fabio Roli
AAML
26
10
0
09 Jul 2024
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
42
0
0
26 Jun 2024
Purify++: Improving Diffusion-Purification with Advanced Diffusion Models and Control of Randomness
Boya Zhang
Weijian Luo
Zhihua Zhang
34
10
0
28 Oct 2023
Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
S. M. Fazle
J. Mondal
Meem Arafat Manab
Xi Xiao
Sarfaraz Newaz
AAML
29
0
0
18 Oct 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
16
11
0
29 Sep 2023
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
14
4
0
12 Sep 2023
Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods
A. Ma
Yangchen Pan
Amir-massoud Farahmand
AAML
25
5
0
13 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Enhancing Adversarial Robustness via Score-Based Optimization
Boya Zhang
Weijian Luo
Zhihua Zhang
DiffM
32
13
0
10 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
42
1
0
29 Jun 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
44
34
0
19 Mar 2023
Delving into the Adversarial Robustness of Federated Learning
Jie M. Zhang
Bo-wen Li
Chen Chen
Lingjuan Lyu
Shuang Wu
Shouhong Ding
Chao Wu
FedML
38
34
0
19 Feb 2023
A Data-Centric Approach for Improving Adversarial Training Through the Lens of Out-of-Distribution Detection
Mohammad Azizmalayeri
Arman Zarei
Alireza Isavand
M. T. Manzuri
M. Rohban
OODD
35
0
0
25 Jan 2023
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
35
5
0
22 Nov 2022
Impact of Adversarial Training on Robustness and Generalizability of Language Models
Enes Altinisik
Hassan Sajjad
Husrev Taha Sencar
Safa Messaoud
Sanjay Chawla
AAML
24
8
0
10 Nov 2022
Adversarial Defense via Neural Oscillation inspired Gradient Masking
Chunming Jiang
Yilei Zhang
AAML
29
2
0
04 Nov 2022
Scoring Black-Box Models for Adversarial Robustness
Jian Vora
Pranay Reddy Samala
33
0
0
31 Oct 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
33
4
0
20 Oct 2022
Effective Targeted Attacks for Adversarial Self-Supervised Learning
Minseon Kim
Hyeonjeong Ha
Sooel Son
Sung Ju Hwang
AAML
39
3
0
19 Oct 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
36
24
0
12 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
33
5
0
11 Oct 2022
Strength-Adaptive Adversarial Training
Chaojian Yu
Dawei Zhou
Li Shen
Jun Yu
Bo Han
Biwei Huang
Nannan Wang
Tongliang Liu
OOD
17
2
0
04 Oct 2022
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
CLL
26
4
0
15 Jun 2022
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
218
419
0
16 May 2022
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
37
0
0
04 May 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
38
15
0
05 Apr 2022
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Paul Gavrikov
J. Keuper
AAML
24
31
0
29 Mar 2022
Self-Ensemble Adversarial Training for Improved Robustness
Hongjun Wang
Yisen Wang
OOD
AAML
13
48
0
18 Mar 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
29
47
0
11 Mar 2022
Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack
Ye Liu
Yaya Cheng
Lianli Gao
Xianglong Liu
Qilong Zhang
Jingkuan Song
AAML
37
57
0
10 Mar 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
30
119
0
21 Feb 2022
Generalized Strategic Classification and the Case of Aligned Incentives
Sagi Levanon
Nir Rosenfeld
24
26
0
09 Feb 2022
Boundary Defense Against Black-box Adversarial Attacks
Manjushree B. Aithal
Xiaohua Li
AAML
21
6
0
31 Jan 2022
Improving Robustness by Enhancing Weak Subnets
Yong Guo
David Stutz
Bernt Schiele
AAML
27
15
0
30 Jan 2022
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
31
5
0
28 Dec 2021
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
209
345
0
15 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wei Cao
Zhenguo Li
UQCV
AAML
41
19
0
07 Dec 2021
Pareto Adversarial Robustness: Balancing Spatial Robustness and Sensitivity-based Robustness
Ke Sun
Mingjie Li
Zhouchen Lin
AAML
27
2
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
61
18
0
07 Oct 2021
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
56
3
0
01 Oct 2021
BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
Weizhe Hua
Yichi Zhang
Chuan Guo
Zhiru Zhang
G. E. Suh
OOD
39
15
0
29 Sep 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
32
15
0
13 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
31
236
0
01 Aug 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
24
4
0
06 Jul 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
21
31
0
09 Jun 2021
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
60
0
21 May 2021
1
2
Next