Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.10072
Cited By
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
25 November 2018
N. Brosse
Alain Durmus
Eric Moulines
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The promises and pitfalls of Stochastic Gradient Langevin Dynamics"
22 / 22 papers shown
Title
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
135
3
0
28 Jan 2025
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
S. Samsonov
Eric Moulines
Qi-Man Shao
Zhuo-Song Zhang
Alexey Naumov
68
5
0
26 May 2024
3D Gaussian Splatting as Markov Chain Monte Carlo
Shakiba Kheradmand
Daniel Rebain
Gopal Sharma
Weiwei Sun
Jeff Tseng
Hossam N. Isack
Abhishek Kar
Andrea Tagliasacchi
Kwang Moo Yi
3DGS
76
52
0
15 Apr 2024
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
56
87
0
15 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
62
296
0
29 Sep 2017
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
57
28
0
04 Sep 2017
Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains
Aymeric Dieuleveut
Alain Durmus
Francis R. Bach
31
154
0
20 Jul 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
49
101
0
16 Jun 2017
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
42
174
0
16 Apr 2017
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
60
159
0
21 Oct 2016
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
74
352
0
05 May 2016
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
102
70
0
31 Dec 2015
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
76
325
0
23 Dec 2015
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Wenzhe Li
Sungjin Ahn
Max Welling
BDL
61
42
0
16 Oct 2015
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
61
410
0
17 Jul 2015
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
60
485
0
15 Jun 2015
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
71
276
0
11 May 2015
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
66
514
0
23 Dec 2014
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
58
231
0
01 Sep 2014
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
93
906
0
17 Feb 2014
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Anoop Korattikara
Yutian Chen
Max Welling
68
243
0
19 Apr 2013
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
74
305
0
27 Jun 2012
1