ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.06386
29
154

Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains

20 July 2017
Aymeric Dieuleveut
Alain Durmus
Francis R. Bach
ArXivPDFHTML
Abstract

We consider the minimization of an objective function given access to unbiased estimates of its gradient through stochastic gradient descent (SGD) with constant step-size. While the detailed analysis was only performed for quadratic functions, we provide an explicit asymptotic expansion of the moments of the averaged SGD iterates that outlines the dependence on initial conditions, the effect of noise and the step-size, as well as the lack of convergence in the general (non-quadratic) case. For this analysis, we bring tools from Markov chain theory into the analysis of stochastic gradient. We then show that Richardson-Romberg extrapolation may be used to get closer to the global optimum and we show empirical improvements of the new extrapolation scheme.

View on arXiv
Comments on this paper