Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.09800
Cited By
Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation for Structure-wise Quality Control
24 November 2018
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation for Structure-wise Quality Control"
17 / 17 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
18
1
0
11 Aug 2023
Exploring Structure-Wise Uncertainty for 3D Medical Image Segmentation
A. Vasiliuk
Daria Frolova
Mikhail Belyaev
B. Shirokikh
28
2
0
01 Nov 2022
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
57
12
0
06 Oct 2022
GaIA: Graphical Information Gain based Attention Network for Weakly Supervised Point Cloud Semantic Segmentation
Min Seok Lee
Seok Woo Yang
S. W. Han
3DPC
22
21
0
02 Oct 2022
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust
Benjamin Lambert
Florence Forbes
Senan Doyle
A. Tucholka
M. Dojat
UQCV
MedIm
6
6
0
22 Sep 2022
Automatic quality control framework for more reliable integration of machine learning-based image segmentation into medical workflows
Elena Williams
Sebastian Niehaus
J. Reinelt
A. Merola
P. Mihai
...
Evelyn Medawar
Daniel Lichterfeld
Ingo Roeder
N. Scherf
Maria del C. Valdés Hernández
26
3
0
06 Dec 2021
SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty Propagation in Encoder-Decoder Networks
Giuseppina Carannante
Dimah Dera
Nidhal C.Bouaynaya
Hassan M. Fathallah-Shaykh
Ghulam Rasool
UQCV
AAML
OOD
27
6
0
10 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
24
58
0
03 Nov 2021
A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation
Richard Shaw
Carole H. Sudre
Sebastien Ourselin
M. Jorge Cardoso
H. Pemberton
UQCV
27
5
0
06 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
35
1,109
0
07 Jul 2021
Deep and Statistical Learning in Biomedical Imaging: State of the Art in 3D MRI Brain Tumor Segmentation
K. R. M. Fernando
Cris P Tsokos
28
53
0
09 Mar 2021
Influence of segmentation accuracy in structural MR head scans on electric field computation for TMS and tES
E. Rashed
J. Gómez-Tames
A. Hirata
13
10
0
25 Sep 2020
Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation
Hong Joo Lee
S. T. Kim
Hakmin Lee
Nassir Navab
Yong Man Ro
UQCV
16
7
0
21 May 2020
Knowing what you know in brain segmentation using Bayesian deep neural networks
Patrick McClure
Nao Rho
J. Lee
Jakub R. Kaczmarzyk
C. Zheng
Satrajit S. Ghosh
D. Nielson
Adam G. Thomas
P. Bandettini
Francisco Pereira
UQCV
3DV
BDL
24
52
0
03 Dec 2018
DeepNAT: Deep Convolutional Neural Network for Segmenting Neuroanatomy
Christian Wachinger
M. Reuter
T. Klein
3DV
40
330
0
27 Feb 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1