Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03962
Cited By
A Convergence Theory for Deep Learning via Over-Parameterization
9 November 2018
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Convergence Theory for Deep Learning via Over-Parameterization"
50 / 354 papers shown
Title
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
39
13
0
22 Mar 2022
TVConv: Efficient Translation Variant Convolution for Layout-aware Visual Processing
Jie Chen
Tianlang He
Weipeng Zhuo
Li Ma
Sangtae Ha
Shueng-Han Gary Chan
CVBM
21
24
0
20 Mar 2022
On the Spectral Bias of Convolutional Neural Tangent and Gaussian Process Kernels
Amnon Geifman
Meirav Galun
David Jacobs
Ronen Basri
30
13
0
17 Mar 2022
Global Convergence of MAML and Theory-Inspired Neural Architecture Search for Few-Shot Learning
Haoxiang Wang
Yite Wang
Ruoyu Sun
Bo-wen Li
31
27
0
17 Mar 2022
Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning
Weixin Liang
Yuhui Zhang
Yongchan Kwon
Serena Yeung
James Zou
VLM
50
394
0
03 Mar 2022
The Spectral Bias of Polynomial Neural Networks
Moulik Choraria
L. Dadi
Grigorios G. Chrysos
Julien Mairal
V. Cevher
24
18
0
27 Feb 2022
Sparse Neural Additive Model: Interpretable Deep Learning with Feature Selection via Group Sparsity
Shiyun Xu
Zhiqi Bu
Pratik Chaudhari
Ian Barnett
27
21
0
25 Feb 2022
Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness
Beomsu Kim
Junghoon Seo
AAML
22
0
0
21 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Benchmark Assessment for DeepSpeed Optimization Library
G. Liang
I. Alsmadi
34
3
0
12 Feb 2022
Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably
Tianyi Liu
Yan Li
Enlu Zhou
Tuo Zhao
38
1
0
07 Feb 2022
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
Neural Collaborative Filtering Bandits via Meta Learning
Yikun Ban
Yunzhe Qi
Tianxin Wei
Jingrui He
OffRL
33
9
0
31 Jan 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
33
3
0
28 Jan 2022
Learning Proximal Operators to Discover Multiple Optima
Lingxiao Li
Noam Aigerman
Vladimir G. Kim
Jiajin Li
Kristjan Greenewald
Mikhail Yurochkin
Justin Solomon
47
1
0
28 Jan 2022
A Kernel-Expanded Stochastic Neural Network
Y. Sun
F. Liang
23
5
0
14 Jan 2022
Implicit Bias of MSE Gradient Optimization in Underparameterized Neural Networks
Benjamin Bowman
Guido Montúfar
28
11
0
12 Jan 2022
In Defense of the Unitary Scalarization for Deep Multi-Task Learning
Vitaly Kurin
Alessandro De Palma
Ilya Kostrikov
Shimon Whiteson
M. P. Kumar
39
74
0
11 Jan 2022
Stochastic Weight Averaging Revisited
Hao Guo
Jiyong Jin
B. Liu
35
29
0
03 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
35
51
0
31 Dec 2021
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
24
1
0
25 Dec 2021
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
212
345
0
15 Dec 2021
Rethinking Influence Functions of Neural Networks in the Over-parameterized Regime
Rui Zhang
Shihua Zhang
TDI
27
21
0
15 Dec 2021
Training Multi-Layer Over-Parametrized Neural Network in Subquadratic Time
Zhao Song
Licheng Zhang
Ruizhe Zhang
32
64
0
14 Dec 2021
Convergence proof for stochastic gradient descent in the training of deep neural networks with ReLU activation for constant target functions
Martin Hutzenthaler
Arnulf Jentzen
Katharina Pohl
Adrian Riekert
Luca Scarpa
MLT
34
6
0
13 Dec 2021
A New Measure of Model Redundancy for Compressed Convolutional Neural Networks
Feiqing Huang
Yuefeng Si
Yao Zheng
Guodong Li
39
1
0
09 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
49
16
0
05 Dec 2021
Fast Graph Neural Tangent Kernel via Kronecker Sketching
Shunhua Jiang
Yunze Man
Zhao Song
Zheng Yu
Danyang Zhuo
29
6
0
04 Dec 2021
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Tri Dao
Beidi Chen
Kaizhao Liang
Jiaming Yang
Zhao Song
Atri Rudra
Christopher Ré
33
75
0
30 Nov 2021
Offline Neural Contextual Bandits: Pessimism, Optimization and Generalization
Thanh Nguyen-Tang
Sunil R. Gupta
A. Nguyen
Svetha Venkatesh
OffRL
29
29
0
27 Nov 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
25
18
0
11 Nov 2021
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
30
31
0
02 Nov 2021
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya Zhang
27
16
0
23 Oct 2021
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
H. Lam
Haofeng Zhang
UQCV
BDL
UD
PER
24
12
0
23 Oct 2021
S-Cyc: A Learning Rate Schedule for Iterative Pruning of ReLU-based Networks
Shiyu Liu
Chong Min John Tan
Mehul Motani
CLL
29
4
0
17 Oct 2021
Provable Regret Bounds for Deep Online Learning and Control
Xinyi Chen
Edgar Minasyan
Jason D. Lee
Elad Hazan
36
6
0
15 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
31
13
0
12 Oct 2021
A global convergence theory for deep ReLU implicit networks via over-parameterization
Tianxiang Gao
Hailiang Liu
Jia Liu
Hridesh Rajan
Hongyang Gao
MLT
31
16
0
11 Oct 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
35
7
0
11 Oct 2021
Does Preprocessing Help Training Over-parameterized Neural Networks?
Zhao Song
Shuo Yang
Ruizhe Zhang
38
49
0
09 Oct 2021
EE-Net: Exploitation-Exploration Neural Networks in Contextual Bandits
Yikun Ban
Yuchen Yan
A. Banerjee
Jingrui He
OffRL
37
39
0
07 Oct 2021
On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications
Ziqiao Wang
Yongyi Mao
FedML
MLT
37
22
0
07 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
43
11
0
06 Oct 2021
Improved architectures and training algorithms for deep operator networks
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
52
105
0
04 Oct 2021
Theory of overparametrization in quantum neural networks
Martín Larocca
Nathan Ju
Diego García-Martín
Patrick J. Coles
M. Cerezo
47
188
0
23 Sep 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
35
18
0
20 Sep 2021
Improving the Robustness of Adversarial Attacks Using an Affine-Invariant Gradient Estimator
Wenzhao Xiang
Hang Su
Chang-rui Liu
Yandong Guo
Shibao Zheng
AAML
29
5
0
13 Sep 2021
Supervising the Decoder of Variational Autoencoders to Improve Scientific Utility
Liyun Tu
Austin Talbot
Neil Gallagher
David Carlson
DRL
32
2
0
09 Sep 2021
TrAISformer -- A Transformer Network with Sparse Augmented Data Representation and Cross Entropy Loss for AIS-based Vessel Trajectory Prediction
Duong Nguyen
Ronan Fablet
21
24
0
08 Sep 2021
Impact of GPU uncertainty on the training of predictive deep neural networks
Maciej Pietrowski
A. Gajda
Takuto Yamamoto
Taisuke Kobayashi
Lana Sinapayen
Eiji Watanabe
BDL
19
0
0
03 Sep 2021
Previous
1
2
3
4
5
6
7
8
Next