ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03804
  4. Cited By
Gradient Descent Finds Global Minima of Deep Neural Networks
v1v2v3v4 (latest)

Gradient Descent Finds Global Minima of Deep Neural Networks

9 November 2018
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
    ODL
ArXiv (abs)PDFHTML

Papers citing "Gradient Descent Finds Global Minima of Deep Neural Networks"

50 / 466 papers shown
Title
An Improved Analysis of Training Over-parameterized Deep Neural Networks
An Improved Analysis of Training Over-parameterized Deep Neural Networks
Difan Zou
Quanquan Gu
77
235
0
11 Jun 2019
Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound
Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound
Zhao Song
Xin Yang
75
91
0
09 Jun 2019
A mean-field limit for certain deep neural networks
A mean-field limit for certain deep neural networks
Dyego Araújo
R. Oliveira
Daniel Yukimura
AI4CE
82
70
0
01 Jun 2019
What Can Neural Networks Reason About?
What Can Neural Networks Reason About?
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAIAI4CE
106
248
0
30 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep
  Neural Networks
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLTAI4CE
125
392
0
30 May 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph
  Kernels
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
142
276
0
30 May 2019
Generalization bounds for deep convolutional neural networks
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
136
90
0
29 May 2019
On the Inductive Bias of Neural Tangent Kernels
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
122
260
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for
  Regression Problems
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
71
57
0
28 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized
  Neural Networks
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
113
126
0
27 May 2019
Temporal-difference learning with nonlinear function approximation: lazy
  training and mean field regimes
Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes
Andrea Agazzi
Jianfeng Lu
93
8
0
27 May 2019
On Learning Over-parameterized Neural Networks: A Functional
  Approximation Perspective
On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective
Lili Su
Pengkun Yang
MLT
78
54
0
26 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
416
183
0
24 May 2019
On the Learning Dynamics of Two-layer Nonlinear Convolutional Neural
  Networks
On the Learning Dynamics of Two-layer Nonlinear Convolutional Neural Networks
Ting Yu
Junzhao Zhang
Zhanxing Zhu
MLT
44
5
0
24 May 2019
How degenerate is the parametrization of neural networks with the ReLU
  activation function?
How degenerate is the parametrization of neural networks with the ReLU activation function?
Julius Berner
Dennis Elbrächter
Philipp Grohs
ODL
96
28
0
23 May 2019
Exploring Structural Sparsity of Deep Networks via Inverse Scale Spaces
Exploring Structural Sparsity of Deep Networks via Inverse Scale Spaces
Yanwei Fu
Chen Liu
Donghao Li
Zuyuan Zhong
Xinwei Sun
Jinshan Zeng
Yuan Yao
46
10
0
23 May 2019
Budgeted Training: Rethinking Deep Neural Network Training Under
  Resource Constraints
Budgeted Training: Rethinking Deep Neural Network Training Under Resource Constraints
Mengtian Li
Ersin Yumer
Deva Ramanan
72
49
0
12 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz
  Augmentation
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
85
110
0
09 May 2019
Linearized two-layers neural networks in high dimension
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
97
243
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
283
928
0
26 Apr 2019
A Selective Overview of Deep Learning
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDLVLM
206
135
0
10 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network
  Model with Skip-connections
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
108
22
0
10 Apr 2019
A Comparative Analysis of the Optimization and Generalization Property
  of Two-layer Neural Network and Random Feature Models Under Gradient Descent
  Dynamics
A Comparative Analysis of the Optimization and Generalization Property of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics
E. Weinan
Chao Ma
Lei Wu
MLT
80
124
0
08 Apr 2019
Stokes Inversion based on Convolutional Neural Networks
Stokes Inversion based on Convolutional Neural Networks
A. Ramos
Institute for Solar Physics
40
45
0
07 Apr 2019
Every Local Minimum Value is the Global Minimum Value of Induced Model
  in Non-convex Machine Learning
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
Kenji Kawaguchi
Jiaoyang Huang
L. Kaelbling
AAML
96
18
0
07 Apr 2019
Convergence rates for the stochastic gradient descent method for
  non-convex objective functions
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
98
101
0
02 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural
  Networks
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
125
182
0
01 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise
  for Overparameterized Neural Networks
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
140
355
0
27 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
291
747
0
19 Mar 2019
Stabilize Deep ResNet with A Sharp Scaling Factor $τ$
Stabilize Deep ResNet with A Sharp Scaling Factor τττ
Huishuai Zhang
Da Yu
Mingyang Yi
Wei Chen
Tie-Yan Liu
57
9
0
17 Mar 2019
Mean Field Analysis of Deep Neural Networks
Mean Field Analysis of Deep Neural Networks
Justin A. Sirignano
K. Spiliopoulos
105
82
0
11 Mar 2019
A Priori Estimates of the Population Risk for Residual Networks
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
103
61
0
06 Mar 2019
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order
  Methods
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
Jason D. Lee
Meisam Razaviyayn
113
344
0
21 Feb 2019
Global Convergence of Adaptive Gradient Methods for An
  Over-parameterized Neural Network
Global Convergence of Adaptive Gradient Methods for An Over-parameterized Neural Network
Xiaoxia Wu
S. Du
Rachel A. Ward
103
66
0
19 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient
  Descent
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
224
1,112
0
18 Feb 2019
Mean-field theory of two-layers neural networks: dimension-free bounds
  and kernel limit
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
90
280
0
16 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian
  Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
202
289
0
13 Feb 2019
Identity Crisis: Memorization and Generalization under Extreme
  Overparameterization
Identity Crisis: Memorization and Generalization under Extreme Overparameterization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Michael C. Mozer
Y. Singer
60
90
0
13 Feb 2019
Towards moderate overparameterization: global convergence guarantees for
  training shallow neural networks
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
75
323
0
12 Feb 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
79
72
0
07 Feb 2019
Are All Layers Created Equal?
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
111
140
0
06 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning
  Over-parameterized Deep ReLU Networks
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODLMLTAI4CE
151
158
0
04 Feb 2019
On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex
  Learning
On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning
Jian Li
Xuanyuan Luo
Mingda Qiao
73
89
0
02 Feb 2019
Depth creates no more spurious local minima
Depth creates no more spurious local minima
Li Zhang
65
19
0
28 Jan 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
138
94
0
28 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
234
974
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
115
95
0
24 Jan 2019
On Connected Sublevel Sets in Deep Learning
On Connected Sublevel Sets in Deep Learning
Quynh N. Nguyen
134
102
0
22 Jan 2019
Elimination of All Bad Local Minima in Deep Learning
Elimination of All Bad Local Minima in Deep Learning
Kenji Kawaguchi
L. Kaelbling
102
45
0
02 Jan 2019
A Theoretical Analysis of Deep Q-Learning
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
203
611
0
01 Jan 2019
Previous
123...1089
Next