Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03804
Cited By
Gradient Descent Finds Global Minima of Deep Neural Networks
9 November 2018
S. Du
J. Lee
Haochuan Li
Liwei Wang
M. Tomizuka
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Descent Finds Global Minima of Deep Neural Networks"
50 / 763 papers shown
Title
Exploring Ordinality in Text Classification: A Comparative Study of Explicit and Implicit Techniques
Siva Rajesh Kasa
Aniket Goel
Karan Gupta
Sumegh Roychowdhury
Anish Bhanushali
Nikhil Pattisapu
Prasanna Srinivasa Murthy
41
1
0
20 May 2024
Approximation and Gradient Descent Training with Neural Networks
G. Welper
38
1
0
19 May 2024
Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data
Jingzhi Hu
Dusit Niyato
Jun Luo
19
2
0
10 May 2024
An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks
Zhifa Ke
Zaiwen Wen
Junyu Zhang
34
0
0
07 May 2024
Physics-Informed Neural Networks: Minimizing Residual Loss with Wide Networks and Effective Activations
Nima Hosseini Dashtbayaz
G. Farhani
Boyu Wang
Charles Ling
28
1
0
02 May 2024
Neural Dynamic Data Valuation
Zhangyong Liang
Huanhuan Gao
Ji Zhang
TDI
48
1
0
30 Apr 2024
Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks
Adeyemi Damilare Adeoye
Philipp Christian Petersen
Alberto Bemporad
28
1
0
23 Apr 2024
The Positivity of the Neural Tangent Kernel
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
28
1
0
19 Apr 2024
CAM-Based Methods Can See through Walls
Magamed Taimeskhanov
R. Sicre
Damien Garreau
21
1
0
02 Apr 2024
Grounding and Enhancing Grid-based Models for Neural Fields
Zelin Zhao
Fenglei Fan
Wenlong Liao
Junchi Yan
39
5
0
29 Mar 2024
From Activation to Initialization: Scaling Insights for Optimizing Neural Fields
Hemanth Saratchandran
Sameera Ramasinghe
Simon Lucey
AI4CE
38
1
0
28 Mar 2024
Approximation with Random Shallow ReLU Networks with Applications to Model Reference Adaptive Control
Andrew G. Lamperski
Tyler Lekang
35
3
0
25 Mar 2024
Data Acquisition via Experimental Design for Decentralized Data Markets
Charles Lu
Baihe Huang
Sai Praneeth Karimireddy
Praneeth Vepakomma
Michael I. Jordan
Ramesh Raskar
FedML
OOD
36
2
0
20 Mar 2024
Robust NAS under adversarial training: benchmark, theory, and beyond
Yongtao Wu
Fanghui Liu
Carl-Johann Simon-Gabriel
Grigorios G. Chrysos
V. Cevher
AAML
OOD
35
3
0
19 Mar 2024
Generalization of Scaled Deep ResNets in the Mean-Field Regime
Yihang Chen
Fanghui Liu
Yiping Lu
Grigorios G. Chrysos
V. Cevher
41
2
0
14 Mar 2024
On the Diminishing Returns of Width for Continual Learning
E. Guha
V. Lakshman
CLL
31
4
0
11 Mar 2024
Improve Generalization Ability of Deep Wide Residual Network with A Suitable Scaling Factor
Songtao Tian
Zixiong Yu
21
1
0
07 Mar 2024
Restricted Bayesian Neural Network
Sourav Ganguly
Saprativa Bhattacharjee
UQCV
BDL
23
0
0
06 Mar 2024
Investigating Deep Watermark Security: An Adversarial Transferability Perspective
Biqing Qi
Junqi Gao
Yiang Luo
Jianxing Liu
Ligang Wu
Bowen Zhou
AAML
31
3
0
26 Feb 2024
Convergence of Gradient Descent for Recurrent Neural Networks: A Nonasymptotic Analysis
Semih Cayci
A. Eryilmaz
26
3
0
19 Feb 2024
LoRA Training in the NTK Regime has No Spurious Local Minima
Uijeong Jang
Jason D. Lee
Ernest K. Ryu
44
14
0
19 Feb 2024
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
38
4
0
07 Feb 2024
Analyzing the Neural Tangent Kernel of Periodically Activated Coordinate Networks
Hemanth Saratchandran
Shin-Fang Chng
Simon Lucey
21
2
0
07 Feb 2024
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks
Andrea Bonfanti
Giuseppe Bruno
Cristina Cipriani
32
7
0
06 Feb 2024
Convex Relaxations of ReLU Neural Networks Approximate Global Optima in Polynomial Time
Sungyoon Kim
Mert Pilanci
46
4
0
06 Feb 2024
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Sobihan Surendran
Antoine Godichon-Baggioni
Adeline Fermanian
Sylvain Le Corff
37
1
0
05 Feb 2024
Understanding the Generalization Benefits of Late Learning Rate Decay
Yinuo Ren
Chao Ma
Lexing Ying
AI4CE
32
6
0
21 Jan 2024
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models
Namjoon Suh
Guang Cheng
MedIm
30
12
0
14 Jan 2024
Understanding Representation Learnability of Nonlinear Self-Supervised Learning
Ruofeng Yang
Xiangyuan Li
Bo Jiang
Shuai Li
SSL
MLT
53
2
0
06 Jan 2024
A Mathematical Guide to Operator Learning
Nicolas Boullé
Alex Townsend
34
36
0
22 Dec 2023
A note on regularised NTK dynamics with an application to PAC-Bayesian training
Eugenio Clerico
Benjamin Guedj
33
0
0
20 Dec 2023
Factor-Assisted Federated Learning for Personalized Optimization with Heterogeneous Data
Feifei Wang
Huiyun Tang
Yang Li
FedML
27
0
0
07 Dec 2023
Dichotomy of Early and Late Phase Implicit Biases Can Provably Induce Grokking
Kaifeng Lyu
Jikai Jin
Zhiyuan Li
Simon S. Du
Jason D. Lee
Wei Hu
AI4CE
41
32
0
30 Nov 2023
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
44
1
0
29 Nov 2023
Weight fluctuations in (deep) linear neural networks and a derivation of the inverse-variance flatness relation
Markus Gross
A. Raulf
Christoph Räth
43
0
0
23 Nov 2023
Distributed Constrained Combinatorial Optimization leveraging Hypergraph Neural Networks
Nasimeh Heydaribeni
Xinrui Zhan
Ruisi Zhang
Tina Eliassi-Rad
F. Koushanfar
AI4CE
32
8
0
15 Nov 2023
Stacked networks improve physics-informed training: applications to neural networks and deep operator networks
Amanda A. Howard
Sarah H. Murphy
Shady E. Ahmed
P. Stinis
AI4CE
55
18
0
11 Nov 2023
On the Convergence of Encoder-only Shallow Transformers
Yongtao Wu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
44
5
0
02 Nov 2023
Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks
Jiayuan Ye
Zhenyu Zhu
Fanghui Liu
Reza Shokri
V. Cevher
32
12
0
31 Oct 2023
Sample Complexity Bounds for Score-Matching: Causal Discovery and Generative Modeling
Zhenyu Zhu
Francesco Locatello
V. Cevher
40
6
0
27 Oct 2023
A qualitative difference between gradient flows of convex functions in finite- and infinite-dimensional Hilbert spaces
Jonathan W. Siegel
Stephan Wojtowytsch
13
3
0
26 Oct 2023
On the Optimization and Generalization of Multi-head Attention
Puneesh Deora
Rouzbeh Ghaderi
Hossein Taheri
Christos Thrampoulidis
MLT
47
33
0
19 Oct 2023
Differential Equation Scaling Limits of Shaped and Unshaped Neural Networks
Mufan Bill Li
Mihai Nica
22
2
0
18 Oct 2023
Wide Neural Networks as Gaussian Processes: Lessons from Deep Equilibrium Models
Tianxiang Gao
Xiaokai Huo
Hailiang Liu
Hongyang Gao
BDL
17
8
0
16 Oct 2023
How Graph Neural Networks Learn: Lessons from Training Dynamics
Chenxiao Yang
Qitian Wu
David Wipf
Ruoyu Sun
Junchi Yan
AI4CE
GNN
22
1
0
08 Oct 2023
Learning A Disentangling Representation For PU Learning
Omar Zamzam
H. Akrami
Mahdi Soltanolkotabi
Richard M. Leahy
17
0
0
05 Oct 2023
Sparse Deep Learning for Time Series Data: Theory and Applications
Mingxuan Zhang
Y. Sun
Faming Liang
AI4TS
OOD
BDL
39
2
0
05 Oct 2023
A Large-Scale 3D Face Mesh Video Dataset via Neural Re-parameterized Optimization
Youwang Kim
Lee Hyun
Kim Sung-Bin
Suekyeong Nam
Janghoon Ju
Tae-Hyun Oh
CVBM
3DH
21
3
0
04 Oct 2023
JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention
Yuandong Tian
Yiping Wang
Zhenyu (Allen) Zhang
Beidi Chen
Simon S. Du
29
35
0
01 Oct 2023
Global Convergence of SGD For Logistic Loss on Two Layer Neural Nets
Pulkit Gopalani
Samyak Jha
Anirbit Mukherjee
19
2
0
17 Sep 2023
Previous
1
2
3
4
5
...
14
15
16
Next