ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.02629
  4. Cited By
Identifying the Best Machine Learning Algorithms for Brain Tumor
  Segmentation, Progression Assessment, and Overall Survival Prediction in the
  BRATS Challenge

Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

5 November 2018
Spyridon Bakas
M. Reyes
Andras Jakab
Stefan Bauer
Markus Rempfler
Alessandro Crimi
Russell Takeshi Shinohara
Christoph Berger
Sung Min Ha
Martin Rozycki
Marcel Prastawa
Esther Alberts
Jana Lipkova
John Freymann
J. Kirby
Michel Bilello
Hassan Fathallah-Shaykh
Roland Wiest
Jan Kirschke
Benedikt Wiestler
Rivka Colen
Aikaterini Kotrotsou
Pamela Lamontagne
Daniel S. Marcus
Mikhail Milchenko
Arash Nazeri
Marc-Andre Weber
Abhishek Mahajan
Ujjwal Baid
Elizabeth R Gerstner
Dongjin Kwon
Gagan Acharya
Manu Agarwal
Mahbubul Alam
Alberto Albiol
Antonio Albiol
Francisco J. Albiol
Varghese Alex
Nigel Allinson
Pedro H. A. Amorim
Abhijit Amrutkar
Ganesh Anand
Simon Andermatt
Tal Arbel
Pablo Arbelaez
Aaron Avery
Muneeza Azmat
Pranjal B.
W Bai
Subhashis Banerjee
Bill Barth
Thomas Batchelder
Kayhan Batmanghelich
Enzo Battistella
Andrew Beers
Mikhail Belyaev
Martin Bendszus
Eze Benson
Jose Bernal
Halandur Nagaraja Bharath
George Biros
Sotirios Bisdas
James Brown
Mariano Cabezas
Shilei Cao
Jorge M. Cardoso
Eric N Carver
Adrià Casamitjana
Laura Silvana Castillo
Marcel Catà
Philippe Cattin
Albert Cerigues
Vinicius S. Chagas
Siddhartha Chandra
Yi-Ju Chang
Shiyu Chang
Ken Chang
Joseph Chazalon
Shengcong Chen
Wei Chen
Jefferson W. Chen
Zhaolin Chen
Kun Cheng
Ahana Roy Choudhury
Roger Chylla
Albert Clérigues
Steven Colleman
Ramiro German Rodriguez Colmeiro
Marc Combalia
Anthony Costa
Xiaomeng Cui
Zhenzhen Dai
Lutao Dai
Laura Alexandra Daza
Eric Deutsch
Changxing Ding
Chao Dong
Shidu Dong
Wojciech Dudzik
Zach Eaton-Rosen
Gary Egan
Guilherme Escudero
Théo Estienne
Richard Everson
Jonathan Fabrizio
Yong-Xian Fan
Longwei Fang
Xue Feng
Enzo Ferrante
Lucas Fidon
Martin Fischer
Andrew P. French
Naomi Fridman
Huan Fu
David T. Fuentes
Yaozong Gao
Evan Gates
David Gering
Amir Gholami
Willi Gierke
Ben Glocker
Biwei Huang
Sandra González-Villá
T. Grosges
Yuanfang Guan
Sheng Guo
Sudeep Gupta
Woo-Sup Han
Il Song Han
Konstantin Harmuth
Huiguang He
Aura Hernández-Sabaté
Evelyn Herrmann
Naveen Himthani
Winston H. Hsu
Cheyu Hsu
Xiaojun Hu
Xiaobin Hu
Yan Hu
Yifan Hu
Rui Hua
Teng-Yi Huang
Weilin Huang
Sabine Van Huffel
Quan Huo
Vivek HV
Khan M. Iftekharuddin
Fabian Isensee
Mobarakol Islam
Aaron S. Jackson
Sachin R. Jambawalikar
Andrew Jesson
Weijian Jian
Peter Jin
V Jeya Maria Jose
Alain Jungo
Bernhard Kainz
Konstantinos Kamnitsas
Po-Yu Kao
Ayush Karnawat
Thomas Kellermeier
Adel Kermi
Kurt Keutzer
Mohamed Tarek Khadir
Mahendra Khened
Philipp Kickingereder
Geena Kim
Nik King
Haley Knapp
Urspeter Knecht
Lisa Kohli
Deren Kong
Xiangmao Kong
Simon Koppers
Avinash Kori
Ganapathy Krishnamurthi
Egor Krivov
Piyush Kumar
Kaisar Kushibar
Dmitrii Lachinov
Tryphon Lambrou
Joon-Young Lee
Chengen Lee
Yuehchou Lee
M Lee
Szidonia Lefkovits
Laszlo Lefkovits
James Levitt
Tengfei Li
Hongwei Bran Li
Wenqi Li
Hongyang Li
Xiaochuan Li
Yuexiang Li
Heng Li
Zhenye Li
Xiaoyu Li
Zeju Li
XiaoGang Li
Wenqi Li
Zheng Lin
Fengming Lin
Pietro Lio
Chang Liu
Boqiang Liu
Xiang Liu
Mingyuan Liu
Ju Liu
Luyan Liu
Xavier Llado
Marc Moreno Lopez
Pablo Ribalta Lorenzo
Zhentai Lu
Lin Luo
Zhigang Luo
Jun Ma
A. Mahajan
Thomas Mackie
Anant Madabushi
Issam Mahmoudi
A. Nazeri
Pradipta Maji
C. P. Mammen
Andreas Mang
B. S. Manjunath
Michal Marcinkiewicz
Jingyu Sun
Stephen McKenna
Richard McKinley
Miriam Mehl
Sachin Mehta
Raghav Mehta
Raphael Meier
Christoph Meinel
Dorit Merhof
Craig Meyer
Robert Miller
Sushmita Mitra
Aliasgar Moiyadi
David Molina-Garcia
Miguel A. B. Monteiro
Grzegorz Mrukwa
Andriy Myronenko
Jakub Nalepa
Thuyen Ngo
Dongjin Kwon
Holly Ning
Chen Niu
Nicholas K Nuechterlein
Eric Oermann
Arlindo L. Oliveira
Diego D. C. Oliveira
Arnau Oliver
Alexander F. I. Osman
Yu-Nian Ou
Sebastien Ourselin
Nikos Paragios
Moo Sung Park
Brad Paschke
J. Gregory Pauloski
Kamlesh Pawar
Nick Pawlowski
Linmin Pei
Suting Peng
Silvio M. Pereira
Julian Perez-Beteta
Victor M. Perez-Garcia
Simon Pezold
Bao Pham
A. Albiol
Gemma Piella
G. N. Pillai
Marie Piraud
Maxim Pisov
Anmol Popli
Michael P. Pound
Reza Pourreza
Prateek Prasanna
Vesna Prkovska
Tony P. Pridmore
Santi Puch
Élodie Puybareau
Buyue Qian
Xu Qiao
Martin Rajchl
Swapnil Rane
Michael Rebsamen
Hongliang Ren
Xuhua Ren
Karthik Revanuru
Mina Rezaei
Oliver Rippel
Luis Carlos Rivera
Charlotte Robert
Bruce Rosen
Alex Varghese
Mohammed Safwan
Mostafa Salem
A. Albiol
Irina Sanchez
Irina Sánchez
Heitor M. Santos
Emmett Sartor
Dawid Schellingerhout
Klaudius Scheufele
Matthew R. Scott
Artur A. Scussel
Sara Sedlar
Juan Pablo Serrano-Rubio
N. Jon Shah
Nameetha Shah
Mazhar Shaikh
B. Pranjal
Zeina A. Shboul
Haipeng Shen
Dinggang Shen
LinLin Shen
Haocheng Shen
Aaron Avery
Feng Shi
Hyung Eun Shin
Hai Shu
Diana Sima
Matthew Sinclair
Orjan Smedby
James M. Snyder
Mohammadreza Soltaninejad
Guidong Song
Mehul Soni
Jean Stawiaski
Shashank Subramanian
Li Sun
Roger Sun
Jiawei Sun
Kay Sun
Yu Sun
Guoxia Sun
Shuang Sun
Yannick R Suter
Laszlo Szilagyi
Sanjay Talbar
Dacheng Tao
Dacheng Tao
Zhongzhao Teng
Siddhesh P. Thakur
Meenakshi H Thakur
Sameer Tharakan
Pallavi Tiwari
Guillaume Tochon
Tuan Tran
Yuhsiang M. Tsai
Kuan-Lun Tseng
T. Tuan
Vadim Turlapov
Nicholas J. Tustison
Maria Vakalopoulou
Sergi Valverde
Rami Vanguri
Evgeny Vasiliev
Jonathan Ventura
Luis Vera
Tom Vercauteren
C. A. Verrastro
Lasitha Vidyaratne
Verónica Vilaplana
Ajeet Vivekanandan
Guotai Wang
Qian Wang
Chiatse J. Wang
Weichung Wang
Duo Wang
Ruixuan Wang
Yuanyuan Wang
Chunliang Wang
Guotai Wang
Ning Wen
Xin Wen
Leon Weninger
Wolfgang Wick
Shaocheng Wu
Qiang Wu
Yihong Wu
Yong-quan Xia
Yanwu Xu
Xiaowen Xu
Peiyuan Xu
Tsai-Ling Yang
Xiaoping Yang
Hao Yang
Junlin Yang
Haojin Yang
Guang Yang
Hongdou Yao
Xujiong Ye
Changchang Yin
Brett Young-Moxon
Jinhua Yu
Xiangyu Yue
Songtao Zhang
Angela Zhang
Kun Zhang
Xuejie Zhang
Lichi Zhang
Xiaoyue Zhang
Yi-Ju Chang
Lei Zhang
Jianguo Zhang
Xiang Zhang
Tianhao Zhang
Sicheng Zhao
Yu Zhao
Xiaomei Zhao
Liang Zhao
Yefeng Zheng
Liming Zhong
Chenhong Zhou
Xiaobing Zhou
Fan Zhou
Hongtu Zhu
Jin Zhu
Ying Zhuge
Weiwei Zong
Jayashree Kalpathy-Cramer
Keyvan Farahani
Christos Davatzikos
Koen van Leemput
Bjoern H. Menze
ArXivPDFHTML

Papers citing "Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge"

50 / 511 papers shown
Title
Memory Efficient 3D U-Net with Reversible Mobile Inverted Bottlenecks
  for Brain Tumor Segmentation
Memory Efficient 3D U-Net with Reversible Mobile Inverted Bottlenecks for Brain Tumor Segmentation
M. Pendse
Vithursan Thangarasa
Vitaliy Chiley
R. Holmdahl
Joel Hestness
D. DeCoste
16
12
0
19 Apr 2021
Latent Correlation Representation Learning for Brain Tumor Segmentation
  with Missing MRI Modalities
Latent Correlation Representation Learning for Brain Tumor Segmentation with Missing MRI Modalities
Tongxue Zhou
S. Canu
P. Vera
S. Ruan
27
141
0
13 Apr 2021
Spatially Varying Label Smoothing: Capturing Uncertainty from Expert
  Annotations
Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations
Mobarakol Islam
Ben Glocker
UQCV
11
45
0
12 Apr 2021
Context-self contrastive pretraining for crop type semantic segmentation
Context-self contrastive pretraining for crop type semantic segmentation
Michail Tarasiou
R. Güler
S. Zafeiriou
SSL
26
17
0
09 Apr 2021
Weakly supervised segmentation with cross-modality equivariant
  constraints
Weakly supervised segmentation with cross-modality equivariant constraints
Gaurav Patel
Jose Dolz
SSL
40
47
0
06 Apr 2021
DARCNN: Domain Adaptive Region-based Convolutional Neural Network for
  Unsupervised Instance Segmentation in Biomedical Images
DARCNN: Domain Adaptive Region-based Convolutional Neural Network for Unsupervised Instance Segmentation in Biomedical Images
Joy Hsu
Wah Chiu
Serena Yeung
20
25
0
03 Apr 2021
Brain Tumor Segmentation and Survival Prediction using 3D Attention UNet
Brain Tumor Segmentation and Survival Prediction using 3D Attention UNet
Mobarakol Islam
V. Vibashan
Jeya Maria Jose Valanarasu
Navodini Wijethilake
Uppal Utkarsh
Hongliang Ren
8
90
0
02 Apr 2021
Glioma Prognosis: Segmentation of the Tumor and Survival Prediction
  using Shape, Geometric and Clinical Information
Glioma Prognosis: Segmentation of the Tumor and Survival Prediction using Shape, Geometric and Clinical Information
Mobarakol Islam
Jeya Maria Jose Valanarasu
Hongliang Ren
14
30
0
02 Apr 2021
Deep Simultaneous Optimisation of Sampling and Reconstruction for
  Multi-contrast MRI
Deep Simultaneous Optimisation of Sampling and Reconstruction for Multi-contrast MRI
Xinwen Liu
Jing Wang
Fangfang Tang
Shekhar S. Chandra
Feng Liu
Stuart Crozier
17
5
0
31 Mar 2021
HAD-Net: A Hierarchical Adversarial Knowledge Distillation Network for
  Improved Enhanced Tumour Segmentation Without Post-Contrast Images
HAD-Net: A Hierarchical Adversarial Knowledge Distillation Network for Improved Enhanced Tumour Segmentation Without Post-Contrast Images
Saverio Vadacchino
Raghav Mehta
N. Sepahvand
Brennan Nichyporuk
James J. Clark
Tal Arbel
MedIm
29
14
0
30 Mar 2021
Artificial Intelligence in Tumor Subregion Analysis Based on Medical
  Imaging: A Review
Artificial Intelligence in Tumor Subregion Analysis Based on Medical Imaging: A Review
Mingquan Lin
Jacob F. Wynne
Y. Lei
Tonghe Wang
W. Curran
Tian Liu
Xiaofeng Yang
35
24
0
25 Mar 2021
Evaluating glioma growth predictions as a forward ranking problem
Evaluating glioma growth predictions as a forward ranking problem
Karin A. van Garderen
S. V. D. Voort
M. Wijnenga
Fatih Incekara
G. Kapsas
R. Gahrmann
Ahmad Alafandi
M. Smits
S. Klein
27
1
0
22 Mar 2021
GLOWin: A Flow-based Invertible Generative Framework for Learning
  Disentangled Feature Representations in Medical Images
GLOWin: A Flow-based Invertible Generative Framework for Learning Disentangled Feature Representations in Medical Images
Aadhithya Sankar
Matthias Keicher
R. Eisawy
Abhijeet Parida
Franz MJ Pfister
Seong Tae Kim
Nassir Navab
OOD
DRL
MedIm
13
8
0
19 Mar 2021
UNETR: Transformers for 3D Medical Image Segmentation
UNETR: Transformers for 3D Medical Image Segmentation
Ali Hatamizadeh
Yucheng Tang
Vishwesh Nath
Dong Yang
Andriy Myronenko
Bennett Landman
H. Roth
Daguang Xu
ViT
MedIm
95
1,538
0
18 Mar 2021
Radiomic Deformation and Textural Heterogeneity (R-DepTH) Descriptor to
  characterize Tumor Field Effect: Application to Survival Prediction in
  Glioblastoma
Radiomic Deformation and Textural Heterogeneity (R-DepTH) Descriptor to characterize Tumor Field Effect: Application to Survival Prediction in Glioblastoma
Marwa Ismail
Prateek Prasanna
K. Bera
Volodymyr Statsevych
Virginia B. Hill
...
S. McGarry
P. LaViolette
M. Ahluwalia
A. Madabhushi
Pallavi Tiwari
MDE
16
11
0
12 Mar 2021
Are we using appropriate segmentation metrics? Identifying correlates of
  human expert perception for CNN training beyond rolling the DICE coefficient
Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
Florian Kofler
Ivan Ezhov
Fabian Isensee
F. Balsiger
Christoph Berger
...
C. Zimmer
D. Ankerst
Jan Kirschke
Benedikt Wiestler
Bjoern H. Menze
31
51
0
10 Mar 2021
Deep and Statistical Learning in Biomedical Imaging: State of the Art in
  3D MRI Brain Tumor Segmentation
Deep and Statistical Learning in Biomedical Imaging: State of the Art in 3D MRI Brain Tumor Segmentation
K. R. M. Fernando
Cris P Tsokos
31
53
0
09 Mar 2021
TransBTS: Multimodal Brain Tumor Segmentation Using Transformer
TransBTS: Multimodal Brain Tumor Segmentation Using Transformer
Wenxuan Wang
Chia-Ju Chen
Meng Ding
Jiangyun Li
Hong Yu
Sen Zha
ViT
MedIm
8
701
0
07 Mar 2021
Imbalance-Aware Self-Supervised Learning for 3D Radiomic Representations
Imbalance-Aware Self-Supervised Learning for 3D Radiomic Representations
Hongwei Bran Li
Fei-Fei Xue
K. Chaitanya
Shengda Liu
Ivan Ezhov
Benedikt Wiestler
Jianguo Zhang
Bjoern H. Menze
SSL
12
25
0
06 Mar 2021
ASC-Net : Adversarial-based Selective Network for Unsupervised Anomaly
  Segmentation
ASC-Net : Adversarial-based Selective Network for Unsupervised Anomaly Segmentation
Raunak Dey
Yi Hong
14
19
0
05 Mar 2021
Convolution-Free Medical Image Segmentation using Transformers
Convolution-Free Medical Image Segmentation using Transformers
Davood Karimi
Serge Vasylechko
Ali Gholipour
ViT
MedIm
84
121
0
26 Feb 2021
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable
  End-to-End Clinical Workflows in Medical Imaging
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-to-End Clinical Workflows in Medical Imaging
Sarthak Pati
Siddhesh P. Thakur
İbrahim Ethem Hamamcı
Ujjwal Baid
Bhakti Baheti
...
D. Kontos
Alexandros Karargyris
Renato Umeton
Peter Mattson
Spyridon Bakas
LM&MA
MedIm
78
44
0
26 Feb 2021
Unsupervised Brain Anomaly Detection and Segmentation with Transformers
Unsupervised Brain Anomaly Detection and Segmentation with Transformers
W. H. Pinaya
Petru-Daniel Tudosiu
Robert J. Gray
G. Rees
P. Nachev
Sebastien Ourselin
M. Jorge Cardoso
ViT
MedIm
24
59
0
23 Feb 2021
Post-hoc Overall Survival Time Prediction from Brain MRI
Post-hoc Overall Survival Time Prediction from Brain MRI
Renato Hermoza
Gabriel Maicas
Jacinto C. Nascimento
G. Carneiro
16
5
0
22 Feb 2021
Transferable Visual Words: Exploiting the Semantics of Anatomical
  Patterns for Self-supervised Learning
Transferable Visual Words: Exploiting the Semantics of Anatomical Patterns for Self-supervised Learning
F. Haghighi
M. Taher
Zongwei Zhou
Michael B. Gotway
Jianming Liang
MedIm
34
106
0
21 Feb 2021
Multi-Texture GAN: Exploring the Multi-Scale Texture Translation for
  Brain MR Images
Multi-Texture GAN: Exploring the Multi-Scale Texture Translation for Brain MR Images
Xiaobin Hu
DiffM
MedIm
14
3
0
14 Feb 2021
Unified Focal loss: Generalising Dice and cross entropy-based losses to
  handle class imbalanced medical image segmentation
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
Michael Yeung
Evis Sala
Carola-Bibiane Schönlieb
L. Rundo
32
394
0
08 Feb 2021
Deep reinforcement learning-based image classification achieves perfect
  testing set accuracy for MRI brain tumors with a training set of only 30
  images
Deep reinforcement learning-based image classification achieves perfect testing set accuracy for MRI brain tumors with a training set of only 30 images
J. Stember
H. Shalu
VLM
6
8
0
04 Feb 2021
Transfer Learning in Magnetic Resonance Brain Imaging: a Systematic
  Review
Transfer Learning in Magnetic Resonance Brain Imaging: a Systematic Review
Juan Miguel Valverde
Vandad Imani
A. Abdollahzadeh
Riccardo De Feo
M. Prakash
Robert Ciszek
Jussi Tohka
OOD
12
92
0
02 Feb 2021
Multi-Threshold Attention U-Net (MTAU) based Model for Multimodal Brain
  Tumor Segmentation in MRI scans
Multi-Threshold Attention U-Net (MTAU) based Model for Multimodal Brain Tumor Segmentation in MRI scans
Navchetan Awasthi
Rohit Pardasani
Swati Gupta
11
19
0
29 Jan 2021
Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer
  using Ensemble of Multiscale Deep Neural Networks with Spatial Attention
Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer using Ensemble of Multiscale Deep Neural Networks with Spatial Attention
Haochen Mei
Wenhui Lei
Ran Gu
Shan Ye
Zhengwentai Sun
Shichuan Zhang
Guotai Wang
31
23
0
27 Jan 2021
A Survey and Analysis on Automated Glioma Brain Tumor Segmentation and
  Overall Patient Survival Prediction
A Survey and Analysis on Automated Glioma Brain Tumor Segmentation and Overall Patient Survival Prediction
R. Agravat
M. Raval
32
22
0
26 Jan 2021
Glioblastoma Multiforme Patient Survival Prediction
Glioblastoma Multiforme Patient Survival Prediction
Snehal Rajput
R. Agravat
Mohendra Roy
M. Raval
24
10
0
26 Jan 2021
Expectation-Maximization Regularized Deep Learning for Weakly Supervised
  Tumor Segmentation for Glioblastoma
Expectation-Maximization Regularized Deep Learning for Weakly Supervised Tumor Segmentation for Glioblastoma
Chao Li
Wenjian Huang
Xi Chen
Yiran Wei
S. Price
Carola-Bibiane Schönlieb
MedIm
18
1
0
21 Jan 2021
Brain Tumor Segmentation and Survival Prediction using Automatic Hard
  mining in 3D CNN Architecture
Brain Tumor Segmentation and Survival Prediction using Automatic Hard mining in 3D CNN Architecture
V. K. Anand
Sanjeev Grampurohit
P. Aurangabadkar
Avinash Kori
Mahendra Khened
R. S. Bhat
Ganapathy Krishnamurthi
19
29
0
05 Jan 2021
Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation
Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation
Carlos Alberto Silva
Adriano Pinto
Sérgio Pereira
Ana P. Lopes
24
11
0
02 Jan 2021
Cutting-edge 3D Medical Image Segmentation Methods in 2020: Are Happy
  Families All Alike?
Cutting-edge 3D Medical Image Segmentation Methods in 2020: Are Happy Families All Alike?
Jun Ma
66
5
0
01 Jan 2021
H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
  Place Solution to BraTS Challenge 2020 Segmentation Task
H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd Place Solution to BraTS Challenge 2020 Segmentation Task
Haozhe Jia
Weidong (Tom) Cai
Heng-Chiao Huang
Yong-quan Xia
27
45
0
30 Dec 2020
MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
  architectures
MRI brain tumor segmentation and uncertainty estimation using 3D-UNet architectures
Laura Mora Ballestar
Verónica Vilaplana
24
36
0
30 Dec 2020
Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
  Sharing Private Information
Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without Sharing Private Information
Qi Chang
Zhennan Yan
L. Baskaran
Hui Qu
Yikai Zhang
Tong Zhang
Shaoting Zhang
Dimitris N. Metaxas
MedIm
21
12
0
15 Dec 2020
HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation
HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation
Saqib Qamar
Parvez Ahmad
Linlin Shen
25
26
0
12 Dec 2020
Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D
  networks with label uncertainty
Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D networks with label uncertainty
Richard McKinley
M. Rebsamen
Katrin Daetwyler
Raphael Meier
Piotr Radojewski
Roland Wiest
3DV
21
26
0
11 Dec 2020
Statistical inference of the inter-sample Dice distribution for
  discriminative CNN brain lesion segmentation models
Statistical inference of the inter-sample Dice distribution for discriminative CNN brain lesion segmentation models
Kevin Raina
14
1
0
04 Dec 2020
Capturing implicit hierarchical structure in 3D biomedical images with
  self-supervised hyperbolic representations
Capturing implicit hierarchical structure in 3D biomedical images with self-supervised hyperbolic representations
Joy Hsu
Jeffrey Gu
Gong-Her Wu
Wah Chiu
Serena Yeung
SSL
36
27
0
03 Dec 2020
Modelling brain lesion volume in patches with CNN-based Poisson
  Regression
Modelling brain lesion volume in patches with CNN-based Poisson Regression
Kevin Raina
MedIm
6
0
0
26 Nov 2020
Simple statistical methods for unsupervised brain anomaly detection on
  MRI are competitive to deep learning methods
Simple statistical methods for unsupervised brain anomaly detection on MRI are competitive to deep learning methods
Victor Saase
H. Wenz
T. Ganslandt
C. Groden
M. Maros
4
5
0
25 Nov 2020
Efficient embedding network for 3D brain tumor segmentation
Efficient embedding network for 3D brain tumor segmentation
Hicham Messaoudi
Ahror Belaid
M. Allaoui
Ahcene Zetout
Mohand Saïd Allili
S. Tliba
Douraied BEN SALEM
Pierre-Henri Conze
3DV
MedIm
19
14
0
22 Nov 2020
A Transfer Learning Based Active Learning Framework for Brain Tumor
  Classification
A Transfer Learning Based Active Learning Framework for Brain Tumor Classification
Ruqian Hao
Khashayar Namdar
Lin Liu
Farzad Khalvati
MedIm
16
48
0
16 Nov 2020
Multi-Decoder Networks with Multi-Denoising Inputs for Tumor
  Segmentation
Multi-Decoder Networks with Multi-Denoising Inputs for Tumor Segmentation
Minh H. Vu
T. Nyholm
Tommy Löfstedt
MedIm
22
18
0
16 Nov 2020
Automatic Brain Tumor Segmentation with Scale Attention Network
Automatic Brain Tumor Segmentation with Scale Attention Network
Yading Yuan
33
32
0
06 Nov 2020
Previous
123...1011789
Next