187
1642

Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

Spyridon Bakas
Andras Jakab
Stefan Bauer
Markus Rempfler
Alessandro Crimi
Russell Takeshi Shinohara
Marcel Prastawa
Jana Lipkova
John Freymann
Michel Bilello
Hassan Fathallah-Shaykh
Roland Wiest
Jan Kirschke
Benedikt Wiestler
Rivka Colen
Pamela Lamontagne
Kayhan Batmanghelich
Andrew Beers
Mariano Cabezas
Zhaolin Chen
Gary Egan
Konstantinos Kamnitsas
Wenqi Li
Wenqi Li
Andriy Myronenko
Sebastien Ourselin
Hongliang Ren
Irina Sanchez
Irina Sánchez
Feng Shi
Dacheng Tao
Dacheng Tao
Guotai Wang
Yuanyuan Wang
Guotai Wang
Yanwu Xu
Guang Yang
Jinhua Yu
Abstract

Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.

View on arXiv
Comments on this paper